
Recurrent Neural Networks
-The most widely used sequential model

Hao Dong

2021, Peking University

1

• Motivation

• Before We Begin: Word Representation

• Sequential Data

• Vanilla Recurrent Neural Network

• Long Short-Term Memory

• Time-series Applications

2

Recurrent Neural Networks

Motivation

3

Motivation

• Both Multi-layer Perceptron and Convolutional Neural Networks take one data sample as the input
and output one result, are categorised as feed-forward neural networks (FNNs) as they only pass
data layer-by-layer and obtain one output for one input (e.g., an image in input with an output of a
class label)

• There are many time-series data sets, such as language, video, and bio-signals that could not fit into
this framework

• The recurrent neural network (RNN) is a deep learning architecture designed for processing time-
series data.

4

Cat 0.97

Feed-forward	Neural	Network

“one	minus	two	plus	three” “the	answer	is	two”

𝑝 𝑦, 𝑥8, 𝑥9, 𝑥: = 𝑝 𝑦 𝑝 𝑥8 𝑥; 𝑝(𝑥9|𝑥;, 𝑥8)𝑝(𝑥:|𝑥;, 𝑥8, 𝑥9)

Motivation

5

Language	Translation

Chatbot

Image	Captioning

Anti-spam Signal	Analysis

Video	Analysis

Sentence	Generation

Before We Begin:
Word Representation

6

Before We Begin: Word Representation

• One-hot Vector

7

• Recurrent	Neural	Network receives	words	one	by	one.	but	let	see	how	a	word	is	
represented	in	computer.

• Simple	method	1:	One-hot vector

“Deep	Learning	is	very	useful”

00001
00010

00100
01000

10000

Disadvantages:

• Large	vocabulary	will	leads	to	“Curse	of	Dimensionality”.

• All	word	representations	are	independent!	Too	sparse!

Word representation

Before We Begin: Word Representation

• Bag of Words

8

• Simple	method	2:	Bag	of	Words
use	the	word	frequencies	to	represent	the	sentence

Disadvantages:

• Large	vocabulary	will	lead	to	“Curse	of	Dimensionality”.

• Missing	the	information	of	the	word	locations.

“we like TensorLayer, do we?”

Word Frequency

we 2

like 1

TensorLayer 1

do 1

[2, 1, 1, 1]

Sentence (text) representation

Before We Begin: Word Representation

• Word Embedding

9

• Represent a word using a vector of floating-point numbers.

hello
hi

she
heit

one

two
threebeijing

hangzhou london

Word	representation	space

“hello” [0.32, 0.98, 0.12, 0.54 ….]

Word	embedding	vector

Similar words are grouped together

Before We Begin: Word Representation

• Word Embedding

10

• Given a vocabulary with 5 words, we can have a word embedding table that each
word has 3 feature values.

Word embedding vectorOne-hot vector Word embedding table

In	practice,	we	will	not	multiple	the	one-hot	vector	and	the	word	embedding	table,	to	save	time,	we	directly	use	the	
word	ID	as	the	row	index	to	find	the	embedding	vector	from	the	table

Word ID (Row Index)

--- 0

deep 1

learning 2

is 3

popular 4

Each word has a unique ID

We need to find a “good” table!

Before We Begin: Word Representation

• Ideal Word Embedding

11

• Low dimension == High-level features to represent the words
• Contains semantic information of the words

Similar words, such as “cat”-“tiger” and “water”-“liquid”, should have similar
word representation.

Semantic information allows semantic operations:

King − Man + Women = Queen
Paris − France + Italy = Rome

The features in the word embedding
contain information, such as “gender”
and “location”.

Before We Begin: Word Representation

• Learn Word Embedding

12

• Use the text document as the training
data without any labels.

• Find similar words by comparing the
context.

• Existing algorithms learn the word embedding table by reading a large text
document to find the patterns, which is one type of self-supervised learning.

• This is a blue bird
• This is a yellow bird
• This is a red bird
• This is a green bird

As the ”color” words located in similar
locations of the sentences, we can group
the “color” words together.

Before We Begin: Word Representation

• Word2Vec

13

• Google 2013

• Word2Vec = Skip-Gram/CBOW+ Negative Sampling

Before We Begin: Word Representation

• Word2Vec

14

• Continuous Bag-of-Words (CBOW): predicts the middle word using the context.
• In “a blue bird on the tree”, the context of “bird” is [“a” , “blue” , “on” , “the”, “ tree”]

this is a blue bird on the tree

bird

a

blue CBOW: maximise the probability of the middle word

In	this	example,	we	only	consider	4	words	on	left	and	
right,	i.e.,	window	size	is	2.

on

the

Note:	only	one	word	embedding	table	here,	different	inputs	
reuse	the	same	table.

Before We Begin: Word Representation

• Word2Vec

15

• Skip-Gram (SG) is opposite to CBOW, but for the same purpose
• CBOW predicts the middle word using the context, while SG predicts the context using the

middle word. In “a blue bird on the tree”, the input of SG is “bird”, the outputs are [“a” , “blue” ,
“on” , “the” , “tree”]

bird

SG: maximise the probability of the context
blue

on

this is a blue bird on the tree

a

the

Before We Begin: Word Representation

• Word2Vec

16

bird
blue

on

this is a blue bird on the tree

a

the

bird
blue

on

a

the

tree

other..

0.99

0.00

0.98
0.99

0.97

0.01

Equal

Sigmoid

• Skip-Gram (SG) is opposite to CBOW, but for the same propose
• CBOW predicts the middle word using the context, while SG predicts the context using the

middle word. In “a blue bird on the tree”, the input of SG is “bird”, the outputs are [“a” , “blue” ,
“on” , “the” , “tree”]

Before We Begin: Word Representation

• Word2Vec

17

• Noise-Contrastive Estimation (NCE)

• Skip-Gram has multiple target outputs, so we use Sigmoid instead of Softmax.
Each word in the vocabulary is separated into either positive and negative sample, and we
classify each word independently.

• A large vocabulary will lead to large computational cost.
We use Negative Sampling to speed up the computation of the loss function，by randomly
sample N negative samples from the vocabulary.

• This method is called Noise-Contrastive Estimation:

𝐸 = −(e
J∈LMN

log 𝑦J + e
O∈PQR

log −𝑦O)

Randomly select N negative samples
Positive samples

Sequential Data

18

Sequential Data

19

Feedforward	Neural	Networks Non	time-series	problems
such	as	image	classification	and	object	detection

Input

Hidden
state

Output

Sequential Data

20

One data input and many data
outputs in order

Input

Hidden
state

Output

Image	captioning:	input	an	image	to	generate	a	sentence

Sequential Data

21

Multiple data inputs and a
single data output

Input

Hidden
state

Output

Sentence	sentiment	classification:	input	a	sentence	in	order	
and	output	the	probability	of	happiness.

Sequential Data

22

Multiple data inputs and
multiple data outputs

Input

Hidden
state

Output

Language	translation:	input	the	entire	sentence	to	the	
model	before	starting	to	generate	the	translated	sentence

asynchronous
(Seq2Seq)

Sequential Data

23

Multiple data inputs and
multiple data outputs

synchronous
(simultaneous)

Input

Hidden
state

Output

Weather	prediction:	input	the	information	to	the	model	in	
every	time-step	and	output	the	predict	weather	condition.

asynchronous
(Seq2Seq)

Sequential Data

24

Recurrent Neural Nets
Store and process the temporal information

Input

Hidden
state

Output

Vanilla Recurrent Neural Network

25

Vanilla Recurrent Neural Network

• Hidden Vector (State)

26

𝑋!:	the	input	of	time 𝑡

The hidden vector of time 𝑡 is the input of 𝑡 + 1

The	only	difference	between	RNN	and	
FNN:	Feed	the	information	of	previous	

time-step	to	its	next	step.

Unrolled

The	hidden	vector	of	time 𝑡

Vanilla Recurrent Neural Network

• Processing Temporal Information

27

I am from China, so I speak ________Chinese
𝑿𝟎 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 𝑿𝟕

ℎ! = 𝜎"(𝑊"𝑥! + 𝑈"ℎ!#$ + 𝑏")
𝑦! = 𝜎%(𝑊%ℎ! + 𝑏%)

𝑊、𝑈、 𝑏 :	Matrix	and	bias
𝜎!、 𝜎" :	activation, 𝜎! is	tanh
𝑦# :	output	at	time 𝑡

ℎ! is	a	zero	vector,	
ℎ"#$ contains the information

of the previous time-step.

Pass information to the future

Unrolled

Vanilla Recurrent Neural Network

• Limitation: Long-Term	Dependency	Problem

28

Difficult to maintain information for a long term.

I am from China, and I live in the UK and US for 10
years, my mother language is ________?

Long Short-Term Memory

29

Long Short-Term Memory

• For solving the Long-Term Dependency Problem

30

Vanilla	RNN LSTM

Long Short-Term Memory

• Gate Function

31

0.53

-0.32

0.72

0.45

1.23

-0.24

0.01

0.99

0.98

0.04

0.98

0.02

0.0053

-0.3168

0.7056

0.0018

1.2054

-0.0048

Input Vector Gate Vector Output Vector

=⨀

• RNN	has	a	hidden	vector,	LSTM	has	both	hidden	and	cell
vectors.

• The	values	in	gate	vector	are	varying	from	0	to	1,	0	means	
“close|,	1	means	“open.”

• “Filter”	the	information	by	multiple	the	input	vector	and	
gate	vector	element-wisely.

0～1

Long Short-Term Memory

• Forget Gate

32

Cell	vector

• Compute	the	forget	gate	vector:

𝑓! = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(ℎ!#$, 𝑥! 𝑾& + 𝑏&)

Concatenate	two	vectors

Long Short-Term Memory

• Input Gate

33

𝐶!=𝑓!⊙𝐶!#$ + 𝑖!⊙ I𝐶!

Forget	previous	information Input	new	information

𝑖!=s𝑖𝑔𝑚𝑜𝑖𝑑(ℎ!#$, 𝑥! 𝑾' + 𝑏')
• Compute	input	gate	vector

I𝐶!=tanh(ℎ!#$, 𝑥! 𝑾(+ 𝑏()
• Compute	information	vector

• Compute	new	cell	vector

Long Short-Term Memory

• Output Gate

34

𝑜!=sigmoid(ℎ!#$, 𝑥! 𝑾) + 𝑏))

ℎ! = 𝑜!⊙tanh(𝐶!)

• Compute	output	gate	vector

• Compute	new	hidden	vector

Long Short-Term Memory

• Questions

35

• Could	we	use	ReLU to	replace	Sigmoid	in	the	Gate	function?

• Why	we	use	tanh	rather	than	Sigmoid	when	feeding	information	to	a	vector?

Long Short-Term Memory

• Variants of LSTM

36

• LSTM was invented in 1997, several variants of LSTM exist, including the Gate Recurrent
Unit (GRU). However, Greff et al. [1] analyzed eight LSTM variants on three representative tasks,
including speech recognition, handwriting recognition, and polyphonic music modeling, and
summarised the results of 5,400 experimental runs (representing 15 years of CPU time). This
review suggests that none of the LSTM variants provides significant improvements to the
standard LSTM.

• Gated Recurrent Unit (GRU) does not have cell state and reduce computational cost and
memory usage of LSTM.

• …

[1] K. Greff, R. K. Srivastava, J. Koutn ́ık, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A search space odyssey,” IEEE TNNLS, 2017.

• Transformer, GPT ….

Time-series Applications

42

Time-series Applications

• Many-to-one: Sentence Sentiment Classification

43

• Use the last output to compute the loss.

• Stack a fully connected layer with Softmax on the top of
the hidden vector.

I Feel Bad

0.88
Positive/Negative

P(Y|x1, x2, x3 …)

Time-series Applications

• One-to-many: Image Captioning

44

This

This

is

is

a

a

bird

bird

<EOS>
• Use the output of every time-step as the input
of its next step.

• Terminate the process when the output is a
special token for end of sentence (EOS)

• Use all outputs to compute the loss, e.g.,
averaged cross-entropy of all outputs.

P(y|x1) P(y|x1, x2) P(y|x1, x2, ….)

Time-series Applications

45

• Synchronous Many-to-Many: Traffic CounWng

• During	training,	a	pre-defined	sequence	
length	is	required to	compute	the	loss.

• During	testing,	input	data	samples	one by	
one.

5 6 7 6

Sequence	length	= 4

Time-series ApplicaEons

• Synchronous Many-to-Many: Text Generation/Language Modelling

46

this is a bird

is a bird <EOS>

During testing, input “this,” output the entire sentence

• The	output	of	each	step	is	equal	to	the	input	
of	its	next	step.

Time-series Applications

• Asynchronous Many-to-Many (Seq2Seq): Chatbot

47

How are you

I’m fine <EOS>

Encode

Decode

• Encode	the	input	sequential	
data	before	starting	to	output	
the	sequential	result.

Time-series Applications

• Asynchronous Many-to-Many: Chatbot

48

<START>

Target	output

How are you

I’m fine <EOS>

I’m fine
Decoder	inputEncoder	input

• Encode the sequential input
data before starting to output
the result.

• During training, add an EOS
token on the target output
and add a START token on the
decoder input.

Summary

49

• Motivation
• Time-series	data

• Before We Begin: Word Representation
• one-hot	vector,	BOW,	word	embedding,	Word2Vec,	CBOW,	Skip-Gram,	negative	sampling,	NCE

• Sequential Data
• one-to-many,	many-to-one,	asynchronous	many-to-many,	synchronous	many-to-many

• Vanilla Recurrent Neural Network
• Hidden	vector	(state),	long-term	dependency	problem

• Long Short-Term Memory
• Cell	vector	(state),	forget	gate,	input	gate,	output	gate	

• Time-series Applications
• one-to-many,	many-to-one,	asynchronous	many-to-many,	synchronous	many-to-many
• Details	of	training	and	testing	(inferencing)

50

Recurrent Neural Networks

51

Recurrent Neural Networks

• References

• Word2Vec Parameter Learning Explained. Rong Xin. arXiv. 2016

• Deep Learning, NLP, and RepresentaVon. Colah Blog. 2014

• Natural Language Processing with Deep Learning. Christopher manning, Richard Socher. Stanford
University. 2017

Thanks

52

