
Energy-based Models
-- Hopfield Network

Hao Dong

Peking University

1

Energy-based Models
-- Hopfield Network

Hao Dong

Peking University

2

3

Contents

• Discrete Hopfield Neural Networks
• Introduction
• How to use
• How to train
• Thinking

• Continuous Hopfield Neural Networks

4

• Discrete Hopfield Neural Networks
• Introduction
• How to use
• How to train
• Thinking

• Continuous Hopfield Neural Networks

5

• Before

All feed forward structures

• What about …

6

Consider this network

𝑓 𝑥 = $
+1 𝑖𝑓 𝑥 ≥ 0
−1 𝑖𝑓 𝑥 < 0

𝑦! = 𝑓(.
"#!

𝑤"! 𝑦" + 𝑏!)

• The output of each neuron is +1/-1
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron
• The weight is symmetric: 𝑤!" = 𝑤"!
• The number of weights = Nx(N-1)/2

assume 𝑤!! = 0

7

Hopfield Net

• At each time, each neuron receives a “field”: ∑"&!𝑤"! 𝑦" + 𝑏!
• If the sign of the field matches its own sign, nothing happens;
• If the sign of the field opposes its own sign, it “flips” to match the

sign of the field.

𝑓 𝑥 = $
+1 𝑖𝑓 𝑥 ≥ 0
−1 𝑖𝑓 𝑥 < 0

𝑦! = 𝑓(.
"#!

𝑤"! 𝑦" + 𝑏!)

𝑦! → −𝑦! , 𝑖𝑓 𝑦! ,
"&'

𝑤"!𝑦" + 𝑏! < 0

8

Hopfield Net

• If the sign of the field opposes its own sign, it “flips” to match the
sign of the field.

• “Flips” of a neuron may cause other neurons to “flip”!

𝑓 𝑥 = $
+1 𝑖𝑓 𝑥 ≥ 0
−1 𝑖𝑓 𝑥 < 0

𝑦! = 𝑓(.
"#!

𝑤"! 𝑦" + 𝑏!)

𝑦! → −𝑦! , 𝑖𝑓 𝑦! ,
"&'

𝑤"!𝑦" + 𝑏! < 0

9

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

10

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

11

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

12

Example

• Red edges are +1, blue edges are -1
• Yellow nodes are -1, black nodes are +1

13

Hopfield Net

• If the sign of the field opposes its own sign, it “flips” to match the field
• Which will change the field at other nodes
• Which may then flip
• Which may cause other neurons to flip
• And so on…

• Will this continue forever?

14

Hopfield Net

• Let 𝑦!
(be the output of the i-th neuron before it responds to the current field

• Let 𝑦!) be the output of the i-th neuron before it responds to the current field

𝑓 𝑥 = $
+1 𝑖𝑓 𝑥 ≥ 0
−1 𝑖𝑓 𝑥 < 0

𝑦! = 𝑓(.
"#!

𝑤"! 𝑦" + 𝑏!)

𝑦! → −𝑦! , 𝑖𝑓 𝑦! ,
"&'

𝑤"!𝑦" + 𝑏! < 0

15

Hopfield Net

• If 𝑦!
(= 𝑓(∑"&!𝑤"! 𝑦" + 𝑏!), then 𝑦!

) = 𝑦!
(

• No “flip” happens

𝑓 𝑥 = $
+1 𝑖𝑓 𝑥 ≥ 0
−1 𝑖𝑓 𝑥 < 0 𝑦! = 𝑓(.

"#!

𝑤"! 𝑦" + 𝑏!)

𝑦!
) ,

"&!

𝑤"! 𝑦" + 𝑏! − 𝑦!
(,

"&!

𝑤"! 𝑦" + 𝑏! = 0

16

Hopfield Net

• If 𝑦!
(≠ 𝑓(∑"&!𝑤"! 𝑦" + 𝑏!), then 𝑦!

) = −𝑦!
(

• ”Flip” happens

𝑦!
) ∑"&!𝑤"! 𝑦" + 𝑏! − 𝑦!

(∑"&!𝑤"! 𝑦" + 𝑏! = 2𝑦!
) ∑"&!𝑤"! 𝑦" + 𝑏! > 0

• Every ”flip” is guaranteed to locally increase
𝑦!) ∑"&!𝑤"! 𝑦" + 𝑏! > 𝑦!

(∑"&!𝑤"! 𝑦" + 𝑏!

17

Globally

• Consider the following sum across all nodes:

• 𝐸(𝑦!, 𝑦", … , 𝑦#) = −∑$ 𝑦$(∑%&$𝑤%$𝑦% + 𝑏$)
= −∑$,%&$ 𝑤$% 𝑦$𝑦% − ∑$ 𝑏$𝑦$

• Assume 𝑤!! = 0

• For a neuron k that ”flips”:
• Δ𝐸 𝑦$ = 𝐸 𝑦%, … , 𝑦$%, … , 𝑦& − 𝐸 𝑦%, … , 𝑦$', … , 𝑦&

= − 𝑦$% − 𝑦$' ∑"#$𝑤"$ 𝑦" + 𝑏$
• Always <0!
• Every ”flip” results in a decrease in E

18

Globally

• Consider the following sum across all nodes:
• 𝐸 𝑦!, 𝑦", … , 𝑦# = −∑$,&'$ 𝑤$& 𝑦$𝑦& −∑$ 𝑏$𝑦$

• E is bounded:
• 𝐸($) = −∑$,&'$ 𝑤$& −∑$ 𝑏$

• The minimum variation of E in a ”flip” is:
• Δ𝐸 ($) = min

$,{+!,$,!…#}
2|∑&'$𝑤&$𝑦& + 𝑏$ |

• So any sequence of flips must converge in a finite number of steps

19

The Energy of a Hopfield Net

• The E is the energy of the network
• 𝐸 𝑦!, 𝑦", … , 𝑦# = −∑$,&'$ 𝑤$& 𝑦$𝑦& −∑$ 𝑏$𝑦$

• The evolution of a Hopfield network decreases its energy

• Analogy: Spin Glass

20

Spin Glass

• Each dipole in a disordered magnetic material
tries to align itself to the local field
• --Filp

• 𝑝! is vector position of i-th dipole
• -- output of each neuron 𝑦!

• The contribution of a dipole to the field
depends on interaction J
• -- Weight 𝑤!"
• Derived from the “Ising” model for magnetic

materials (Ising and Lenz, 1924)

22

Spin Glass

• The system stops at one of its stable point
• local minimum of the energy

• Every point will return to the stable point
after evolving
• The system remembers its stable state

23

Contents

• Discrete Hopfield Neural Networks
• Introduction
• How to use
• How to train
• Thinking

• Continuous Hopfield Neural Networks

24

• The bias is typically not utilised
• It’s similar to having a single extra neuron that is pegged to 1.0

• The network will evolve until it arrives at a local minimum in the energy contour

Hopfield Network

𝑓 𝑥 = $+1 𝑖𝑓 𝑥 ≥ 0
−1 𝑖𝑓 𝑥 < 0

𝑦! = 𝑓(.
"#!

𝑤"! 𝑦" + 𝑏!)

25

Content-addressable memory

• Each minima is a “stored” pattern
• How to store?

• Recall memory content from partial or corrupt values

• Also called associative memory

• The path is not unique

26

Real-world Examples

• Take advantage of content-addressable memory

Input Process of Evolution

27

Real-world Examples

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield

28

Computation

• Updates can be done sequentially, or all at once
• Usually update all nodes once per epoch
• In one epoch, the nodes are updated randomly

• The system will converge to the local minimum
• Not deterministic

1. Initialise network with initial pattern
𝑦! = 𝑥!, 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate until convergence

𝑦! = 𝑓 .
"#!

𝑤"! 𝑦" + 𝑏! , 0 ≤ 𝑖 ≤ 𝑁 − 1

29

Evolution

• The energy is a quadratic function.
• 𝐸 = −∑4,564 𝑤45 𝑦4𝑦5 − ∑4 𝑏4𝑦4
• 𝐸 = − 7

8
𝑦9𝑊𝑦 − 𝑏9𝑦

• But why not global minimum?

• For DHN, the energy contour is only defined on a
lattice
• Corners of a unit cube on −1, 1 &

30

Evolution
• If we use tanh for activation
• Still not global minimum, why?
• Local minimum still exists

• An example for a 2-neuron net
• Without bias, the local minimum is

symmetric, why?

−
1
2𝑦

(𝑊 𝑦 = −
1
2 −𝑦 (𝑊(−𝑦)

31

Contents

• Discrete Hopfield Neural Networks
• Introduction
• How to use
• How to train
• Thinking

• Continuous Hopfield Neural Networks

32

Issues to be solved

• How to store a specific pattern?

• How many patterns can we store?

• How to “retrieve” patterns better?

33

How to store a specific pattern?

• For an image with N pixels, we need:
• N neurons
• & &)%

* weights (symmetric)

• Consider the setting without bias
• 𝐸 = −∑!,"#! 𝑤!" 𝑦!𝑦"

• Goal: Design W so that the energy is local minimum at pattern 𝑃 = {𝑦!}

34

Method1: Hebbian Learning

• We want:
• 𝑓 ∑"#!𝑤"!𝑦" = 𝑦! ∀𝑖

• Hebbian Learning:
• 𝑤"! = 𝑦"𝑦!

• 𝑓 ∑"#!𝑤"!𝑦" = 𝑓 ∑"#! 𝑦"𝑦!𝑦" = 𝑓 ∑"#! 𝑦"*𝑦! = 𝑓 𝑦! = 𝑦!

• The pattern is stationary

• E,-. = −∑!,"#! 𝑤!" 𝑦!𝑦" = − %
*𝑁(𝑁 − 1)

35

Method1: Hebbian Learning

• Note:
• If we store P, we will also store –P

• For K patterns:
• 𝑦$ = 𝑦%$, 𝑦*$, … , 𝑦&$, 𝑘 = 1,… , 𝐾
• 𝑤!" =

%
&
∑$ 𝑦!$𝑦"$

• Each pattern is stable

36

Method1: Hebbian Learning - How many patterns can we store?

• A network of N neurons trained by Hebbian learning can store
~0.14N patterns with low probability of error (<0.4%)
• Assume P(bit=1)=0.5
• Patterns are orthogonal – maximally distant
• The maximum Hamming distance between two N-bit

patterns is N/2 (because symmetry)
• Two patterns differ in N/2 bits are orthogonal

• The proof can be found in 11-785 CMU Lec 17

37

Method1: Hebbian Learning - Example: 4-bit pattern

• Left: stored pattern. Right: energy map
• Local minima exists

38

Method1: Hebbian Learning - Parasitic Patterns

• Parasitic patterns are not expected

39

Method2: Geometric approach

• Consider W = 𝑦𝑦(i.e., 𝑤"! = 𝑦"𝑦!
• W is a positive semidefinite matrix

• 𝐸 = − %
*𝑦

(𝑊𝑦 − 𝑏(𝑦 is convex quadratic

• But remember y is the corner of the unit
hypercube

40

Method2: Geometric approach

• Evolution of the network:
• Rotate y and project it onto the nearest corner.

41

Method2: Geometric approach

• Goal: Design W such that 𝑓 𝑊𝑦 = 𝑦

• Simple solution: y is the Eigenvector of W
• Note the eigenvalue of W are non-negative
• The eigenvector of any symmetric matrix are orthogonal

• Storing K orthogonal patterns 𝑌 = 𝑦%, 𝑦*, … , 𝑦/
• 𝑊 = 𝑌Λ𝑌𝑇
• Λ is a positive diagonal matrix diag(𝜆1, 𝜆2, … 𝜆K)
• Hebbian rule: 𝜆 = 1.
• All patterns are equally important

42

Method3: Optimisation

• 𝐸 = − %
*𝑦

(𝑊𝑦 − 𝑏(𝑦
• This must be maximally low for target patterns
• Also must be maximally high for all other patterns

• 𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛0∑1∈3! 𝐸 𝑦 − ∑1∉3! 𝐸(𝑦)
𝑌5: set of target pattern

43

Method3: Optimisation

• 𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛0∑1∈3! 𝐸 𝑦 − ∑1∉3! 𝐸(𝑦)
• Y5: set of target pattern

• Intuitively:

44

Method3: Optimisation

• 𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛0∑1∈3! 𝐸 𝑦 − ∑1∉3! 𝐸(𝑦) , where 𝐸 = − %
*𝑦

(𝑊𝑦 − 𝑏(𝑦

• So gradient descent:
• 𝑊:= 𝑊 + 𝛼(∑1∈3! yy

(−∑1∉3" 𝑦𝑦
()

• Repeating a pattern can emphasise the importance.

• What about 𝑦 ∉ 𝑌𝑝?

45

Method3: Optimisation

• 𝑊:= 𝑊 + 𝛼(∑1∈3! yy
(−∑1∉3" 𝑦𝑦

()

• We only need to focus on valleys.
• How to find valleys?

• Random sample and let it evolve

48

Method3: Optimisation
• 𝑊:= 𝑊 + 𝛼(∑1∈3! yy

(−∑1∉3",167899:1 𝑦𝑦
()

• Initialise W
• Repeat until convergence or limitation:
• Sample target pattern
• Initialise the network with target pattern and let it evolve a

few steps
• Update weights

49

Contents

• Discrete Hopfield Neural Networks
• Introduction
• How to use
• How to train
• Thinking

• Continuous Hopfield Neural Networks

50

Thinking
• The capacity of Hopfield Network
• How many patterns can be stored?
• Orthogonal <N; Non-orthogonal?

• Something bad happens:
• When noise increase…

51

Thinking
• Something bad happens:
• The results are not perfect…

52

Thinking
• Something bad happens:
• The results are not perfect…
• Because of the local minima

53

Thinking – Stochastic Hopfield Net
• Something bad happens:
• The results are not perfect…

• We can make Hopfield net stochastic
• Each neuron responds probabilistically
• If the difference if not large, the probability of flipping approaches 0.5
• T is a “temperature” parameter

𝑧! =
1
𝑇
.
"#!

𝑤!"𝑦" + 𝑏!

𝑃 𝑦! = 1 = 𝜎 𝑧!
𝑃 𝑦! = −1 = 1 − 𝜎(𝑧!)

54

Thinking – Stochastic Hopfield Nets

• What’s the final state? (How do we recall a memory?)
• The average of the final few iterations

55

Contents

• Discrete Hopfield Neural Networks
• Introduction
• How to use
• How to train
• Thinking

• Continuous Hopfield Neural Networks

56

Continuous Hopfield Neural Network

• Energy function :

• The output of each neuron are real numbers in [-1,+1]

• Application: optimisation (TSP)

• Issues:
• Design the energy function for specific problems
• The variable of the problem and the neuron of the CHNN

Reference

• CMU 11-785 Lec17, 18

Thanks

58

