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e Before
All feed forward structures

Inputs O

e What about ...
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Consider this network

_[+1lifx=0
f(x)_{—lifx<0

Vi = f(z w;j; Vi + b;)

J#i

The output of each neuron is +1/-1

* Every neuron receives input from every other neuron

* Every neuron outputs signals to every other neuron

The weight is symmetric: w;; = wj;  assumew; =0

The number of weights = Nx(N-1)/2 6
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Hopfield Net

_[+1lifx=0
f(x)_{—lifx<0

Vi = f(z w;j; Vi + b;)

J#i

* At each time, each neuron receives a “field”: Zjii wj; ¥j + b;

* If the sign of the field matches its own sign, nothing happens;
* If the sign of the field opposes its own sign, it “flips” to match the
sign of the field.

Vi = —YVi,lf Vi (2 wj;yj + bi) <0

Jj#i
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Hopfield Net

_[+1lifx=0
f(x)_{—lifx<0

Vi = f(z w;j; Vi + b;)

J#i

* If the sign of the field opposes its own sign, it “flips” to match the
sign of the field.
 “Flips” of a neuron may cause other neurons to “flip”!

Vi = —YVi,lf Vi (z wj;yj + bi) <0

Jj#i
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Example

10

A0t

-15 -10 -5 0 5 10 15

* Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1
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Example

10

10+
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* Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1
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Example

10 |
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-18 -10 -5 0 5 10 15

* Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1
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Example

10
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-18 -10 -5 0 5 10 15

* Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1

12
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Hopfield Net

* If the sign of the field opposes its own sign, it “flips” to match the field
* Which will change the field at other nodes
* Which may then flip
* Which may cause other neurons to flip
 Andsoon..
* Will this continue forever?

13
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Hopfield Net

_[+1lifx=0
f(x)_{—lifx<0

Vi = f(z w;j; Vi + b;)

J#i

* Let yl-O be the output of the i-th neuron before it responds to the current field
* Let yl-1 be the output of the i-th neuron before it responds to the current field

yi = —Yi,if y; <z Wjiyj + bi) <0
Jj#i

14
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Hopfield Net

f(x)={tigiig Yi=f(szi3’j+bi)

JE!

Y] = f(Zjeiwjiyj + bo), thenyi =y
* No “flip” happens

vi <Z wji yj + bi) —¥P (z wj; i + bi) =0

J#I JES!

15
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Hopfield Net

o« Ity # f(Z;2iwjiyj + bi), theny! = —y)
* "Flip” happens

Vi (Zjeiwjiyj + b)) =¥ (Zj2iwji yj + bi) = 2y (X j2iwji yj + bi) >0
* Every "flip” is guaranteed to locally increase

Yil(zjiiwji yj t bi) > YP(Zjiini yj t bi)

16
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Globally

e Consider the following sum across all nodes:
* EWVu Y2 o0 IN) = — 2 Vi jzi WiiYj + bi)
= — X j=i Wij Yi¥Vj — i biYi

* Assumew;; =0

 For aneuron k that "flips”:
o AE(yy) = E(yl, ey Vi, ...,yN) — E(yl, o Ve, ...,yN)
= _(:VI% - yg)(z:jik Wik Y T bk)
e Always <0!
* Every “flip” results in a decrease in E

17
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Globally

e Consider the following sum across all nodes:

* E(y1, Y2, 0 YN) = — X j=i Wij YiVj — 2i biyi
* Eis bounded:

* Emin = — X j=i|Wij| — Zilbil
 The minimum variation of E in a "flip” is:

* |AE|pin = i,{yir,?=ir11...N}2| 2. j=i Wjiyj + b |

* So any sequence of flips must converge in a finite number of steps
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The Energy of a Hopfield Net

* The E is the energy of the network

* E(y1, Y2, 0 YN) = — X j=i Wij YiVj — 2i biyi
* The evolution of a Hopfield network decreases its energy

* Analogy: Spin Glass

19
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Spin Glass
e Each dipole in a disordered magnetic material T e
tries to align itself to the local field === =T =
. = e B A ST ]
* —Filp | = ===
* p; is vector position of i-th dipole Y I

* -- output of each neuron y;

: : : , Total field at current dipole:
* The contribution of a dipole to the field ¥

depends on interaction J () = Z w5
* - Welght Wij f Pi) = : ']]lx] L
. . . J#1
e Derived from the “Ising” model for magnetic / \
materials (Ising and Lenz, 1924) intrinsic external

20
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Spin Glass
The system stops at one of its stable point ’:—:—..:Z—,’:; =
* local minimum of the energy = =

Every point will return to the stable point
after evolving

* The system remembers its stable state

state

22
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Contents

* Discrete Hopfield Neural Networks

* How to use

23
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Hopfield Network
_|+1lifx=0 |
f(x)_{—lifx<0 0\

Vi = f(z W;ji Vj + b;)

J#i

state

* The bias is typically not utilised
* It’s similar to having a single extra neuron that is pegged to 1.0

* The network will evolve until it arrives at a local minimum in the energy contour

24
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Content-addressable memory

N

PE

state

* Each minima is a “stored” pattern
e How to store?

* Recall memory content from partial or corrupt values
* Also called associative memory

* The path is not unique

25
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Real-world Examples

* Take advantage of content-addressable memory

Input Process of Evolution

26
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Real-world Examples

Eeconstructio

Hoplield network reconstructing degraded nages
from notsy (top) or partial (bottormn) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield 27
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Computation

1. Initialise network with initial pattern
Vi = Xi, 0<i<N-1
2. Iterate until convergence

Yi=f<szi}’j+bi>,0SiSN—l

J#i

* Updates can be done sequentially, or all at once
e Usually update all nodes once per epoch
* In one epoch, the nodes are updated randomly

* The system will converge to the local minimum
* Not deterministic
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Evolution

* The energy is a quadratic function.

* E ==z Wij YiyVj — 2ibiyi

e But why not global minimum?

* For DHN, the energy contour is only defined on a
lattice
* Corners of a unit cube on [—1, 1]V

29
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Evolution

* |f we use tanh for activation
 Still not global minimum, why?
e Local minimum still exists

* An example for a 2-neuron net | G B 1 T
« Without bias, the local minimum is 27 Wy = 2 (=) W(=y)
symmetric, why?

1

Wyt =Wp
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Contents

* Discrete Hopfield Neural Networks

* How to train

31
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Issues to be solved

 How to store a specific pattern?
* How many patterns can we store?

* How to “retrieve” patterns better?

32
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How to store a specific pattern?

* For an image with N pixels, we need:

* N neurons
. N(N-1)
2

weights (symmetric)

* Consider the setting without bias
* E ==X i Wij ViV

* Goal: Design W so that the energy is local minimum at pattern P = {y;}

33
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Method1: Hebbian Learning

* We want:
* f(Zjriwiiy;) = yi Vi

Hebbian Learning:
* Wji = V)i

* fEjawiiy) = FZeiyiyvyi) = F(Ejwyiy) = FO) =y

The pattern is stationary

1
* Emin = =Xy s Wij Yi¥j = —5;N(N = 1)

34
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Method1: Hebbian Learning

* Note:
* |f we store P, we will also store —P

* For K patterns:

* v = [yE vk vkl k=1,.,K
1
* Wi =T Viyf

* Each pattern is stable

35
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* A network of N neurons trained by Hebbian learning can store
~0.14N patterns with low probability of error (<0.4%)
 Assume P(bit=1)=0.5
* Patterns are orthogonal — maximally distant
 The maximum Hamming distance between two N-bit
patterns is N/2 (because symmetry)
* Two patterns differ in N/2 bits are orthogonal

* The proof can be found in 11-785 CMU Lec 17
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Method1: Hebbian Learning - Example: 4-bit pattern

* Left: stored pattern. Right: energy map
* Local minima exists

Topological representation on a Karnaugh map 1 pattern of 4 bits

1,1 ]

-1,1

-1,1

1,1 11

1.1

37
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Method1: Hebbian Learning - Parasitic Patterns

* Parasitic patterns are not expected

Target patterns Parasites

Energy

v

state

38
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* Consider W = yy’ ie, wj; = y;y;
* W is a positive semidefinite matrix

« F= —%yTWy — by is convex quadratic

 But remembery is the corner of the unit
hypercube

39



Method2: Geometric approach

Evolution of the network:

* Rotate y and project it onto the nearest corner.

Projection: sign(Wy)

o

Wy
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Method2: Geometric approach

* Goal: Design W such that f(Wy) =y

e Simple solution: y is the Eigenvector of W
* Note the eigenvalue of W are non-negative
* The eigenvector of any symmetric matrix are orthogonal

e Storing K orthogonal patterns Y = [y, V>, ..., Vx|
o W =YAYT
e A is a positive diagonal matrix diag(A4, 4,, ... A)
 Hebbianrule: 4 = 1.
* All patterns are equally important
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Method3: Optimisation

E=—-y"Wy—bTy
This must be maximally low for target patterns
Also must be maximally high for all other patterns

W = argminy, Zyeyp E(y) — Zyeyp E(y)
Yy: set of target pattern
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Method3: Optimisation

* W =argminy Zyeyp E(y) — ZyEYp E(y)
* Yp: set of target pattern

* Intuitively:

Energy

state

43
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Method3: Optimisation

. 1
W = argminy Xyey, EQY) — Xyev, E() , where E = — y"Wy — b"y

So gradient descent:
s W:=W + a(ZyEYp ny — ZyGEYp ny)

Repeating a pattern can emphasise the importance

What about y € Yp?




Method3: Optimisation

e W:=W + a(Zyeyp ny — ZyQYP ny)

* We only need to focus on valleys.
* How to find valleys?

 Random sample and let it evolve

Energy

state

N e 74 F
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45
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Method3: Optimisation
c Wi=W + a(ZyEYp ny - Zye’EYp,y:valley ny)

* Initialise W
* Repeat until convergence or limitation:
* Sample target pattern
* |nitialise the network with target pattern and let it evolve a
few steps
* Update weights

Energy

state 48
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Contents

* Discrete Hopfield Neural Networks

* Thinking
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Thinking

* The capacity of Hopfield Network
* How many patterns can be stored?
* Orthogonal <N; Non-orthogonal?

* Something bad happens:
. When noise increase...

fRifE(ECT2)

prifE(C

e 5 (B01)
iR (571)

-

FRE(ECTE)

U (R 1)

5 (%)

PrRE(E 1)
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Thinking
* Something bad happens:
* The results are not perfect...

Hoplield network reconstructing degraded inages
from notsy (top) or partial (bottom) cues.

51
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Thinking
* Something bad happens:

* The results are not perfect...
* Because of the local minima

Target patterns Parasites

Energy

v

state

52
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Thinking — Stochastic Hopfield Net

* Something bad happens:
* The results are not perfect...

* We can make Hopfield net stochastic
e Each neuron responds probabilistically
* If the difference if not large, the probability of flipping approaches 0.5
* Tisa “temperature” parameter

1
Zi = ?z Wl]y] + bi

PO = 1) = 0(z)
P = —1) = 1 - 0(z)
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Thinking — Stochastic Hopfield Nets

 What’s the final state? (How do we recall a memory?)
* The average of the final few iterations

1wk
= — > 0?
y (M zt=L—M+1Yt)

54
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Contents

e Continuous Hopfield Neural Networks
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Continuous Hopfield Neural Network

* Energy function :

n

L= _%iiwn‘ViVi _ZV;[:' +i%j:ﬁf_l(v)dv
i=1

i=1 j=1 i=I

The output of each neuron are real numbers in [-1,+1]

Application: optimisation (TSP)
* |ssues:

* Design the energy function for specific problems
* The variable of the problem and the neuron of the CHNN

56
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Reference

* CMU 11-785 Lecl7/, 18
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Thanks
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