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* Density Estimation
e Kernel Density Estimation
* Importance Sampling
* Latent Representation
* Clustering
* Compression
* Disentanglement
e Others
* NLL
* VAE Evaluation
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* Density Estimation
* Kernel Density Estimation
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Kernel Density Estimation

e Given a sample dataset, how to get its probability density function P(X) ?

* Parametric Estimation
e Suppose it conforms to a certain probability distribution
e Fit the parameters in the distribution according to it
Example: Likelihood Estimation, Mixed Gaussian

A
gmle

=argmax (0 | X;; XyyesX,)
0O

Limitations:
Subjective prior knowledge needs to be added
Hard to fit the real distribution model
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Kernel Density Estimation

* Given a sample dataset, how to get its probability density function?

* Non-parametric Estimation
* No subjective prior knowledge added

* Only according to the data itself
e Can get better model than Parametric Estimation

* Kernel Density Estimation is a kind of Non-parametric Estimation
* Proposed by Rosenblatt (1955) and Emanuel Parzen (1962)
* Also named Parzen window



Non-parametric Estimation: Histogram

* Given a sample dataset, how to observe its distribution?

* Histogram is an intuitive way to show the distribution
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The height of each bar is proportional to the number of data point which fall

into the interval

The width of the bar is an important parameter

Different bins partition results in different visual effect

Histogram

Histogram, bins shifted




Non-parametric Estimation: Histogram

* Limitations:
* The distribution curve displayed by histogram is not smooth
 Samples in a bin have equal probability density
* For more accurate estimation, increase the number of bins
* Then every point of the sample has its own probability

 However, it can also cause problems
* The probability of values not appearing in the sample is O
* Discontinuity of probability density function

* Thus, we should connect these discontinuous intervals
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Kernel Density Estimation

* |dea

* For the probability density of each sample point
* Take advantage of its neighborhood information
* Then the discontinuity problem of Histogram is solved
* Then every point of the sample has its own probability

© -

* For x’s neighbourhood [x — h, x + h] i

* Whenh — 0, the probability density of x’s
neighborhood can be viewed as probability
density of x

Density

A 1 . -l'\'r.rirj x—h,z+h]
f(z) = — lim : :

2h h—>0 *'7\".!(')!(11
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Kernel Density Estimation

. . ) 1 ..  Nziclz—nzin)
Deduction f(2) = 55 Jim —=
tota

- 1 ik 1 |1' — &Ly
T) = - Ti = - < 1,h— >0
P = g 22~ TR 2 B

* The choice of h can’t be too big or too small

* Bias-variance Tradeoff
- 1 |z — x|

1
* Denote K(x) =7 l(y<1y  f(z)= - Neocal s
i¥tota

)

* The integral of probability density is 1

Bt Irl
' K(- )dz = /K t)dt = /K
/f( hi\'mml / Z\’tolal
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Kernel Functions

. The integral of K(x) should be 1

There are many kinds of kernel functions

* Uniform . : : : i
e Triangular Sy B,

.o 1.0 F —— Triangle .
* BIWEIght - Epanechnikov
* Triweight _—_%J;gécht
* Epanechnikov 08I Gaussian

Cosine

e Normal

0.6 | .
e Gaussian Kernel - 5| |
* Convenient to use
0.2} .
K(u) = = exp (— 202
(1) V2n Pli-pt) 0.0 | :
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* Histogram density estimate vs. KDE estimate with Gaussian kernel

An Instance
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An Instance

* Given: A model pg(x) with an intractable/ill-defined density
Let S = {x, x(?) xB3) x*H) x(5) x(6)} be 6 data points drawn from pg

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

-2.1

-1.3

-0.4

1.9

5.1

6.2

What is pg(—0.5)?

Answer 1: Since —(0.5 ¢ S, pg(—0.5) — 0
Answer 2: Compute a histogram by binning the samples ¢ ¢

Bin width =2

Min height =1/12
Area under histogram should equal 1

pe(—0.5) = 1/6

pe(—1.99) = 1/6
pe(—2.01) = 1/6

t

010

f

Density
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An Instance

* Answer 3: Compute kernel density estimate over S

ﬁ(X)Z%ZK<

x(Nes

x_

o)

(1)

)
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where o is called the bandwidth parameter and K is called the kernel function.
* Use Gaussian Kernel
* Histogram density estimate vs. KDE estimate with Gaussian kernel

Density function
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* Density Estimation

* Importance Sampling

15
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Importance Sampling

 Monte Carlo Integration
* Importance Sampling is a sampling strategy of Monte Carlo Integration
The integral curve f(x) is not analytical

b
We want to calculate / f(z)dx

Sample ntimesin [a,D]: {z,,z;...,z,} , the values are {f(z1), f(z2),..., f(z.)}

e Then =

. & 15 1
b—a

[ f@de =23 @) -

a - i=1 »
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Importance Sampling

* We want to calculate the expectation of f(x)
* Ourtarget: gy :/W(x)f(a:)da: when x~m(x)

 However, m(x) is infeasible to sample

* Find a distribution p(x) which is feasible to sample
 Sample ntimesinp(x) : {z1,22,...,2Zn}

* Then

* Where m(zi) is the weight of importance
p(zi) .
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Importance Sampling

* An example
* We want to calculate the expectation of f(x) = x

e x is under the normal distribution of mean 1 and standard deviation 1
* Infeasible to sample from the original distribution N(1,1)

* Can sample from a normal distribution N(1,0.25)

e Suppose that we sample for two times

* The firsttime: x = 1.09

N
* The second time: x = 2.36 E[f] = % 3 ”(mf) f(z:)
* Eachtime, calculate  P(z) =1 Plai)
P(;l’),f(l?j)

. | is ,0.3973 0.1582, . . .
The final resultis 2200y a9 =2 Cogmyse 0517
0.7851 0.0197

18
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* Latent Representation

19
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Evaluating Latent Representations

 What does it mean to learn “good” latent representations?

* For a downstream task, the representations can be evaluated based

on the corresponding performance metrics e.g., accuracy for
semi-supervised learning, reconstruction quality for denoising

* For unsupervised tasks, there is no one-size-fits-all

* Three commonly used notions for evaluating unsupervised latent

representations

e Clustering

* Compression

* Disentanglement
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* Latent Representation
e Clustering

21
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* Representations that can group together points based on some
semantic attribute are potentially useful (e.g., semi-supervised

classification)
* Clusters can be obtained by applying k-means or any other algorithm
in the latent space of generative model

Clustering

e 2D representations learned by two generative models for MNIST
digits with colors denoting true labels. Which is better? B or D? .



Clustering
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For labelled datasets, there exists many quantitative evaluation metrics

We want data with the same label to be clustered in the same class

Note labels are only used for evaluation, not obtaining clusters itself (i.e.,
clustering is unsupervised)

Three commonly used metrics of evaluating clustering for labelled dataset

 Completeness score (between [0, 1])
* Homogeneity score (between [0, 1])
* V measure score (also called normalised mutual information, between [0, 1])
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Clustering

 H(C) is the class entropy
]
H(C)=— n;c-log (n_c)

1 1
c=1

 H(C|K) is the conditional entropy of a given class

1l |K]

o~ " T — IICk ' g IICk
EI) — ~ 33 ko ()

* The same with H(K|C) and H(K)

* nisthe total number of samples
* n.and n, belong are the number of samples of class C and class k respectively
* Ny are the number of samples divided from class C to class K.

24
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Clustering

 Completeness score(c): maximised when all the data points that are
members of a given class are elements of the same cluster

H(K|C)
H(K)

 Homogeneity score(h): maximised when all of its clusters contain only
data points which are members of a single class

| _ H(C|K) y— 9. h-c
H(C) h+c

* V measure score(v): harmonic mean of completeness and homogeneity
score .



Clustering
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 Homogeneity, Completeness, and mean V measure score

* Advantages:

Clear score: from 0 to 1, it reflects the worst to the best performance;

The explanation is intuitive: the harmonic mean of the difference can be
qgualitatively analysed in terms of homogeneity and integrity;

The cluster structure is not assumed: the results of two clustering algorithms,
such as k-means algorithm and spectral clustering algorithm, can be compared.

 Limitations:

Completely random labels do not always produce the same completeness and
homogeneity values.

Thus the harmonic mean v-measure obtained is not the same.

In particular, random markers do not produce zero scores, especially when
the number of clusters is large.



Clustering
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Implementation

>>> from sklearn import metrics
>>> labels_true = [0, @, @, 1, 1,
>>> labels pred = [0, @, 1, 1, 2,

>>> metrics.homogeneity score(labels_true, labels_pred)

60.66...

-

Q

o

4
10

11

12

21

29
L&

>>> metrics.completeness_score(labels_true, labels pred)

90.42...

>>> metrics.v_measure_score(labels true, labels pred)

29.51....

4 >>> metrics.homogeneity completeness_v_measure(labels_true, labels_pred)

(0.66..., 0.42..., 0.51...)

>>> labels_true
>>> labels_pred

o, 6.6, 1.1,:13
[0, 0,8, 1,2, 2]

@ >>> metrics.homogeneity completeness_v_measure(labels_true, labels pred)

(1.9, ©.68..., 0.81...)
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Why the V
measure score
is better in the
second
example?

27
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* Latent Representation

* Compression

28
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Compression

* Latent representations can be evaluated based on the maximum

compression they can achieve without significant loss in
reconstruction accuracy

UT Zappos50k
11 bits/px

IPEG2000
21x compression

JPEG

Ja/al»&ﬁIlaoW
PP YFrEY PV . JV S PF®: =
P YV EY N VI
Reinllp PO VYV P PR P

 Some standard metrics for reconstruction
* Mean Squared Error (MSE)
* Peak Signal to Noise Ratio (PSNR)
e Structure Similarity Index (SSIM)

29
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* Latent Representation

* Disentanglement

30



0\}Nl|, ,

N ¢ 7 S >4

g U S
7598 PEKING UNIVERSITY

* Intuitively, we want representations that disentangle independent
and interpretable attributes of the observed data
(b) Age/gender

Disentanglement

(a) Skin colour

o |lo|O|O|O)

2. 23)
o
l
.

D
>
>
>
>

Source: Higgins et al., 2018 Source: Shu et al., 2019

* Provide user control over the attributes of the generated data
* When Z; is fixed, size of the generated object never changes
* When Z; is changed, the change is restricted to the size of the generated object

31
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Disentanglement: DRIT

. X domam
. Y domain

* Content representation éiﬁ:f:f:ﬁf,"

e Appearance representation

(a) Training with unpaired images

"\ *
Al

(b) Testing with random attributes (c) Testing with a given attribute

Fig.3: Method overview. (a) With the proposed content adversarial loss
Leanent (Section 3.1) and the cross-cycle consistency loss L{¢ (Section 3.2), we
are able to learn the multimodal mapping between the domain A and Y with
unpaired data. Thanks to the proposed disentangled representation, we can gen-
erate output images conditioned on either (b) random attributes or (¢) a given

attribute at test time.
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Disentanglement

* Disentangling generative factors is theoretically impossible without

additional assumptions

Challenging Common Assumptions in the Unsupervised Learning of Disentangled
Representations

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Ratsch, Sylvain Gelly, Bernhard Schoélkopf, Olivier Bachem
(Submitted on 29 Nov 2018 (v1), last revised 18 Jun 2019 (this version, v4))

The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which
can be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common
assumptions. We first theoretically show that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases on
both the models and the data. Then, we train more than 12000 models covering most prominent methods and evaluation metrics in a reproducible large-scale
experimental study on seven different data sets. We observe that while the different methods successfully enforce properties ““encouraged" by the corresponding
losses, well-disentangled models seemingly cannot be identified without supervision. Furthermore, increased disentanglement does not seem to lead to a
decreased sample complexity of learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role
of inductive biases and (implicit) supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a
reproducible experimental setup covering several data sets.

Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.Al); Machine Learning (stat.ML)
Journal reference: Proceedings of the 36th International Conference on Machine Learning (ICML 2019)
Cite as: arXiv:1811.12359 [cs.LG]

{or arXiv:1811.12359v4 [cs.LG] for this version)

33
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Recap: Vanilla VAE

e Variational Auto Encoder (VAE)

pixiz) l - alzix) X

Latent space
representation.

Neural network Neural network
We'd like to use our mapping x to z. mapping z to x,
observations to
understand the hidden
variable.

e Classical VAE Loss
Lyag (0, ¢) = — log pe(x) + Dxu (g5 (2]x) || pe(z|x))

— —Ezw%(z!x)pg()dZ) + Dk, (QQ(zIx)llp@(z))
0", 9" = argmin Lyg
0,6

34
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Recap: Beta-VAE

e B-VAE is a variant of VAE

* B-VAE enhances the ability of VAE in terms of disentanglement
 Maximise the probability of generating real data
 Minimise the KL divergence of real and estimated posterior distributions

* The corresponding Lagrange function is:

F(6,9,8) = Ez~q,(z/x) l0g Pa(x|2) — ;’3(D;\-|, ((1,‘,»)(2‘)()”})(}(2)) — 5)
= Egnq, (zix) 108 Po(x|2) — BDkL (q,;,(z|x)||pf,(z ) + Bé

)
> Eyeq, (zx) l0g Po(x|2) — BDkL (g4 (2]x)||ps(2))

* To maximise the F(6, ¢, 8), the loss is:

Lgera (¢, 8) = —Eyeq, (aix) l0g P (x|2) + BDx1, (94 (2|x)||ps(2))

35
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Recap: Beta-VAE

e B-VAE is a variant of VAE

]:(0* ?, ))) — Ez~—q'.,(z§x) 1(){.’;]])()(XEZ) - ."B(DKI, ((L_;,(Z‘X)“])H(Z)) - (5)

= Ezq, (zx) log pa(x|2) — BDxkL (q,;,(z|x)||pﬁ(z)) + Bd

> i‘z----q,_,.('zix) 102 pg(XiZ) - ABDKL (qc‘;(z‘x) p()(z))

Lgera (¢, 8) = —Eysq, (aix) l0g P (x|2) + BDx1, (94 (2|x)||ps(2))

* Lagrange multiplier B is a super parameter.
* A higher beta value reduces the information richness of z representation in

the latent variable space, but increases the ability of disentanglement
* [ can be used as a balance factor between representation ability and
disentanglement ability.

36
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Mutual Information Gap

* B-VAE provides an evaluation metric for disentanglement
* Accuracy of a linear classifier that predicts a fixed factor of variation

B-TCVAE provides another evaluation metric for disentanglement

e Mutual Information
* The empirical mutual information between latent variable z; and a real
factor vj, can be represented by a joint distribution

q(zj,vk) = on_y P(vr)p(n|vr)g(z|n)

* Assuming that latent variable factor p(v;) and generation process are known
e Mutual information is the following formula.

Tn(z_,;m) = F . [10{,, L zi|n) p(n|uk } - H(z_,)

* Where H(z;) is the Shannon entropy of latent variable z;.

37
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Mutual Information Gap

* Nevertheless...
* If areal factor vy has high mutual information with many latent variable z;s

* In this case, we only want the maximum mutual information value
* Thus, mutual information isn’t a good metric
 The gap between the largest and second largest mutual information works!

e Mutual Information Gap (MIG)
* The largest mutual information value minus the second largest one:

I
K 2 Hu) \ " (zm 30 ) —max I (23 vs)

e ' 1F1

* This formula is a widely used evaluation metric for disentanglement.

38
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e QOthers
e NLL
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Negative Log Likelihood

* Negative Log Likelihood (NLL)

L(y) = —log(y)

* Applied in generative models

We want to find a set of parameters to
minimise the loss

The function is the logarithm of
probability distribution
Thevalueofpis0<p <1

After logarithm, the curve is shown as
the red curve in [0,1]

Minus the function, we can get the NLL
curve in black

& =/ F2) »
& N2 o
el [ 'ﬁ
r;: a = 5 & =
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_y=log, x

/' (a>1)

\ ." - ]()‘:"l' X

(O<a<l)

/ \

Range of negative log-likelihood

— . - r ’
0.0 0.2 04 06 08

Figure: The loss function reaches infinity when input 40

is 0, and reaches 0 when input is 1,
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e QOthers

 VAE Evaluation

41
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Evaluation of VAE

* Negative Log Likelihood (NLL)
 NLL is actually a term in the loss of the classical VAE

Lvag (6, ¢) = —logps(x) + Dxy, (g4 (2/x)|pe(2|x))
== _Ez'-—q_‘.,,lfz x)pﬁ(x'z) T Dl\'li (q(‘»,(Z‘X)Hp@(Z))

9*, (f)* — aI'g Ir)lill LV;—\E
0.¢
e Also, it can be used as an evaluation metric for VAE

* NLL represents the probability of generating real data

* Less NLL indicated better generation of VAE

42
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Summary

* Density Estimation
e Kernel Density Estimation
* Importance Sampling
* Latent Representation
* Clustering
* Compression
* Disentanglement
e Others
* NLL
* VAE Evaluation
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Thanks
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