
Normalising Flow Models (Part 1)
Hao Dong

Peking University

1

Normalising Flow Models (Part 1)
Hao Dong

Peking University

2

Where we are?

• Autoregressive Models
𝑝 𝑥!, 𝑥", … , 𝑥# = 𝑝 𝑥! 𝑝 𝑥" 𝑥! 𝑝(𝑥$|𝑥!, 𝑥")…𝑝(𝑥#|𝑥!,…, 𝑥#%!)
• Provide tractable likelihoods
• No direct mechanism for learning features
• Slow generation – Wavenet: 1 second audio takes 90 mins (200K samples)

• Variational Autoencoders
𝑝 𝑋 = ∑! 𝑝 𝑋 𝑍 𝑝(𝑍) or 𝑝 𝑋 = ∫! 𝑝 𝑋 𝑍 𝑝 𝑍 𝑑𝑍
• Can learn feature representations (via latent variables Z)
• Have intractable marginal likelihoods.
• Optimising a lower bound – it is not maximising the likelihood … we don’t know the gap.

Question: Can we design a latent variable model with tractable likelihoods?
Yes! We can use normalising flow models. (Today)

3

Reference slides

• Hung-yi Li. Flow-based Generative Model
• Stanford “Deep Generative Models”. Normalising Flow Models

4

5

• Background
• Generator
• Change of variable theorem (1D)
• Jacobian Matrix & Determinant
• Change of variable theorem

• Normalising Flow
• Flow-based model
• Learning and inference
• Desiderata

6

• Background
• Generator
• Change of variable theorem (1D)
• Jacobian Matrix & Determinant
• Change of variable theorem

• Normalising Flow
• Flow-based model
• Learning and inference
• Desiderata

Generator

• A generator G is a network. The network maps a simple distribution
(for example, normal distribution) 𝜋(𝑧) to a complex data distribution
𝑝!(𝑥), which aims to be as close to real data distribution 𝑝"#$# 𝑥 as
possible.

7

• 𝐺∗ = 𝑎𝑟𝑔max
!
∑&'() 𝑙𝑜𝑔𝑃! 𝑥&

• Normalising flow models directly optimise the objective function!
• Key idea: Map simple distributions (easy to sample and evaluate

densities) to complex distributions (learned via data) using change of
variables.

8

9

Autoregressive
Autoencoder

Flow-based Model
-1

10

• Background
• Generator
• Change of variable theorem (1D)
• Jacobian Matrix & Determinant
• Change of variable theorem

• Normalising Flow
• Flow-based model
• Learning and inference
• Desiderata

Change of Variable Theorem (1D)

• Let 𝑍 be a uniform random variable 𝑈[0,1] with density 𝜋*. What is
𝜋*(1/2)?
• 1

• Let 𝑋 = 𝑓 𝑍 = 2𝑍 + 1 and let 𝑝+ be its density. What is 𝑝+(2)?
• When Z = 1/2, X = 2Z + 1 = 2, so does 𝑝" 2 = 𝜋!

#
$
= 1?

• No

• Solution:
• As Z is uniform in [0, 1], X is uniform in [1,3], so 𝑝"(2) = 1/2

11

Change of Variable Theorem (1D)

x = 𝑓 𝑧

𝜋 𝑧

𝑝 𝑥

A𝜋 𝑧 𝑑𝑧 = 1

A𝑝 𝑥 𝑑𝑥 = 1

= 2𝑧 + 1

𝑥

𝑧
0 1

1

1 3

0.5

𝑧,

𝑥,

𝑝 𝑥, =
1
2
𝜋 𝑧,

12

Change of Variable Theorem (1D)

x = 𝑓 𝑧

𝜋 𝑧

𝑥

𝑧

𝑝 𝑥

𝑧,

𝑥,

𝑓

𝜋 𝑧,

𝑝 𝑥,

What are
their relations?

13

Change of Variable Theorem (1D)

When	𝑥 = 𝑓(𝑧) and	function	𝑓 is	invertible and	differentiable.	
If	𝑓 is	monotonically	increasing,	we	have 𝑃𝑟 𝑧, ≤ 𝑧 ≤ (𝑧, + Δ𝑧) =
𝑃𝑟 𝑓 𝑧, ≤ 𝑓 𝑧 ≤ 𝑓 𝑧, + Δ𝑧 = 𝑃𝑟(𝑥, ≤ 𝑥 ≤ (𝑥′ + Δx))

If 𝑓 is monotonically decreasing, we can get the same result.
So	we	get	

A
-!

-!./-
𝜋 𝑧 𝑑𝑧 = A

0!

0!./0
𝑝 𝑥 𝑑𝑥

14

cumulative distribution function当Δ绝对小的时候，x和z之间变化的概率密度的面积是一样的

Change of Variable Theorem (1D)

• ∫-!
-!./-𝜋 𝑧 𝑑𝑧 = ∫0!

0!./0 𝑝 𝑥 𝑑𝑥

• Use laGrange's Mean Value Theorem, we get
• 𝜋 �̃� Δ𝑧 = 𝑝]𝑥 Δx

• where
• 𝑧, ≤ �̃� ≤ 𝑧, + Δ𝑧
• 𝑥, ≤]𝑥 ≤ 𝑥, + Δ𝑥

• When Δ𝑧 → 0, we have 𝑝 𝑥′ = 𝜋 𝑧′ /-
/0 0'0,

= 𝜋 𝑧′ ∂𝑧
∂𝑥 0'0,

15Change of variable theorem (1D)

Change of Variable Theorem (1D)

𝑧, 𝑧, + ∆𝑧

𝑥, 𝑥, + ∆𝑥

𝑧

𝑥

𝜋 𝑧%

𝑝 𝑥%

The blue square and the green
square should be equal in area

𝑝 𝑥, |∆𝑥| = 𝜋 𝑧, |∆𝑧|

𝑝 𝑥, = 𝜋 𝑧, |
∂𝑧
∂𝑥 |

16

Change of Variable Theorem (1D)

• change of variable theorem (1-D case): if 𝑥 = 𝑓(𝑧) and	function	𝑓 is	
invertible	and	differentiable,	then 𝑝 𝑥 = 𝜋 𝑧 ∂𝑧

∂𝑥 = 𝜋 𝑧 ∂3"#(0)
∂𝑥

• How about multi-dimension cases?
• We need more math background.

17

18

• Background
• Generator
• Change of variable theorem (1D)
• Jacobian Matrix & Determinant
• Change of variable theorem

• Normalising Flow
• Flow-based model
• Learning and inference
• Desiderata

Jacobian Matrix (2D case)

𝑥 = 𝑓 𝑧

𝑧 =
𝑧(
𝑧6𝑥 =

𝑥(
𝑥6

𝐽3 =
⁄𝜕𝑥(𝜕𝑧(⁄𝜕𝑥(𝜕𝑧6
⁄𝜕𝑥6 𝜕𝑧(⁄𝜕𝑥6 𝜕𝑧6

𝐽3"# =
⁄𝜕𝑧(𝜕𝑥(⁄𝜕𝑧(𝜕𝑥6
⁄𝜕𝑧6 𝜕𝑥(⁄𝜕𝑧6 𝜕𝑥6

𝑧 = 𝑓7(𝑥

𝑧(+ 𝑧6
2𝑧(

= 𝑓
𝑧(
𝑧6

𝐽3 =
1 1
2 0

𝑥(
𝑥6 =

𝑥6/2
𝑥(− 𝑥6/2

= 𝑓7(
𝑥(
𝑥6

𝐽3"# =
0 1/2
1 −1/2

input

output

𝐽3𝐽3"# = 𝐼
19

1） 2）

3） 4）

Determinant

• 2 X 2 • 3 x 3

𝐴 = 𝑎 𝑏
𝑐 𝑑

𝑑𝑒𝑡 𝐴 = 𝑎𝑑 −𝑏𝑐

𝐴 =
𝑎(𝑎6 𝑎8
𝑎9 𝑎: 𝑎;
𝑎< 𝑎= 𝑎>

𝑑𝑒𝑡 𝐴 =
𝑎(𝑎:𝑎> +𝑎6𝑎;𝑎<+𝑎8𝑎9𝑎=

−𝑎8𝑎:𝑎<−𝑎6𝑎9𝑎>−𝑎(𝑎;𝑎=

The determinant of a square matrix is a scalar that provides
information about the matrix.

𝑑𝑒𝑡 A = ⁄1 𝑑𝑒𝑡 𝐴7(

𝑑𝑒𝑡 𝐽3 = ⁄1 𝑑𝑒𝑡 𝐽3"#
20

Determinant

• 2 X 2 • 3 x 3

𝐴 = 𝑎 𝑏
𝑐 𝑑

𝐴 =
𝑎(𝑎6 𝑎8
𝑎9 𝑎: 𝑎;
𝑎< 𝑎= 𝑎>

|𝑑𝑒𝑡 𝐴 |

𝑎!, 𝑎", 𝑎# 𝑎$, 𝑎%, 𝑎&

𝑎', 𝑎(, 𝑎)

(a,b)

(c,d)

V

21

22

• Background
• Generator
• Change of variable theorem (1D)
• Jacobian Matrix & Determinant
• Change of variable theorem

• Normalising Flow
• Flow-based model
• Learning and inference
• Desiderata

Change of Variable Theorem (2D case)

𝜋 𝑧*

𝑧(

𝑧6

𝑝 𝑥*

𝑥(

𝑥6

∆𝑧!

∆𝑧"

∆𝑥!!

∆𝑥!"

∆𝑥"!

∆𝑥""

𝑝 𝑥, 𝑑𝑒𝑡 ∆𝑥((∆𝑥6(
∆𝑥(6 ∆𝑥66

= 𝜋 𝑧, ∆𝑧(∆𝑧6
23

𝑝 𝑥, 𝑑𝑒𝑡 ∆𝑥((∆𝑥6(
∆𝑥(6 ∆𝑥66

= 𝜋 𝑧, ∆𝑧(∆𝑧6

𝑝 𝑥,
1

∆𝑧(∆𝑧6
𝑑𝑒𝑡 ∆𝑥((∆𝑥6(

∆𝑥(6 ∆𝑥66
= 𝜋 𝑧,

𝑝 𝑥, 𝑑𝑒𝑡 ∆𝑥((/∆𝑧(∆𝑥6(/∆𝑧(
∆𝑥(6/∆𝑧6 ∆𝑥66/∆𝑧6

= 𝜋 𝑧,

𝑝 𝑥, 𝑑𝑒𝑡 𝜕𝑥(/𝜕𝑧(𝜕𝑥6/𝜕𝑧(
𝜕𝑥(/𝜕𝑧6 𝜕𝑥6/𝜕𝑧6

= 𝜋 𝑧,

𝑝 𝑥, 𝑑𝑒𝑡 𝜕𝑥(/𝜕𝑧(𝜕𝑥(/𝜕𝑧6
𝜕𝑥6/𝜕𝑧(𝜕𝑥6/𝜕𝑧6

= 𝜋 𝑧, (transpose)

𝑝 𝑥, 𝑑𝑒𝑡 𝐽3 = 𝜋 𝑧,
𝑝 𝑥, = 𝜋 𝑧,

1
𝑑𝑒𝑡 𝐽3𝑝 𝑥, = 𝜋 𝑧, 𝑑𝑒𝑡 𝐽3"#

x = 𝑓 𝑧

24

Change of Variable Theorem (General case)

• Change of Variable Theorem (General case): if the mapping function
between Z and X, given by 𝑓: 𝑅? → 𝑅?, is differentiable and invertible
such that 𝑋 = 𝑓(𝑍) and 𝑍 = 𝑓7((𝑋), then

𝑝 𝒙 = 𝜋 𝒛 det(
𝜕𝑓7((𝒙)
𝜕𝒙) = 𝜋 𝒛 𝑑𝑒𝑡 𝐽3"#

• Note 1: x and z need to be continuous and have the same dimension
• Note 2: since for any invertible matrix A, det 𝐴7(= det 𝐴 7(

𝑝 𝒙 = 𝜋 𝒛
1

𝑑𝑒𝑡 𝐽3

25

26

• Background
• Generator
• Change of variable theorem (1D)
• Jacobian Matrix & Determinant
• Change of variable theorem

• Normalising Flow
• Flow-based model
• Learning and inference
• Desiderata

Flow-based Model

generator
G𝑧 𝑥 = 𝐺 𝑧

Normal
Distribution

𝑝+(𝑥)

𝜋(z)

𝑝! 𝑥& = 𝜋 𝑧& 𝑑𝑒𝑡 𝐽!"#

𝑝 𝑥, = 𝜋 𝑧, 𝑑𝑒𝑡 𝐽3"#

𝐺∗ = 𝑎𝑟𝑔max
!
q
&'(

)

𝑙𝑜𝑔𝑝! 𝑥&

𝑧& = 𝐺7(𝑥& You know 𝐺,!
You can compute 𝑑𝑒𝑡 𝐽+

𝐺 has limitation

100 x 100 x 3

𝑝 𝑥, 𝑑𝑒𝑡 𝐽3 = 𝜋 𝑧,

𝑙𝑜𝑔𝑝! 𝑥& = 𝑙𝑜𝑔𝜋 𝐺7(𝑥& + 𝑙𝑜𝑔 𝑑𝑒𝑡 𝐽!"# 27

G is limited. We need more generators

G1

𝑝@ 𝑥& = 𝜋 𝑧& 𝑑𝑒𝑡 𝐽!#"# ⋯ 𝑑𝑒𝑡 𝐽!$"#

G2 G3

𝜋(𝑥) 𝑝!(𝑥) 𝑝"(𝑥) 𝑝#(𝑥)

𝑝6 𝑥& = 𝜋 𝑧& 𝑑𝑒𝑡 𝐽!#"# 𝑑𝑒𝑡 𝐽!%"#

𝑝(𝑥& = 𝜋 𝑧& 𝑑𝑒𝑡 𝐽!#"#

…
…

𝑙𝑜𝑔𝑝@ 𝑥& = 𝑙𝑜𝑔𝜋 𝑧& +q
A'(

@
𝑙𝑜𝑔 𝑑𝑒𝑡 𝐽!$"# Maximise

𝑧& = 𝐺(7(⋯𝐺@7(𝑥&

28

What you actually do? G𝑧 𝑥

G-1

𝑙𝑜𝑔𝑝! 𝑥& = 𝑙𝑜𝑔𝜋 𝐺7(𝑥& + 𝑙𝑜𝑔 𝑑𝑒𝑡 𝐽!"#

𝑝-./. 𝑥

𝑥0𝑧0 = 𝐺,! 𝑥0

This term: make 𝑧0
become zero
vector

If 𝑧0 is always zero:
𝐽+&' would be zero matrix
𝑑𝑒𝑡 𝐽+&' = 0

If z is zero, this term
will be -inf

Actually, we train G-1 , but we use G for generation. 29

30

• Background
• Generator
• Change of variable theorem (1D)
• Jacobian Matrix & Determinant
• Change of variable theorem

• Normalising Flow
• Flow-based model
• Learning and inference
• Desiderata

Learning and inference

• Learning via maximum likelihood over the dataset D

max
B

𝑙𝑜𝑔𝑝 𝐷; 𝜃 = q
0∈D

𝑙𝑜𝑔𝜋 𝐺B
7(𝑥 + 𝑙𝑜𝑔 𝑑𝑒𝑡

𝜕𝐺B7((𝒙)
𝜕𝒙

• 1）Exact likelihood evaluation via inverse transformation and change
of variables formula
• 2）Sampling via forward transformation 𝐺B: 𝑍 → 𝑋

𝑧~𝜋 𝑧 , 𝑥 = 𝐺B(𝑧)
• 3）Latent representations inferred via inverse transformation (no

inference network required!)
𝑧 = 𝐺B

7((𝑥)

31

Normalising Flow

• “Normalising” means that the change of variables gives
a normalised density after applying an invertible transformation.
• “Flow” means that the invertible transformations can be composed

with each other to create more complex invertible transformations.

32

33

• Background
• Generator
• Change of variable theorem (1D)
• Jacobian Matrix & Determinant
• Change of variable theorem

• Normalising Flow
• Flow-based model
• Learning and inference
• Desiderata

Desiderata for flow models

• Simple prior 𝜋(𝑧) that allows for efficient sampling and tractable
likelihood evaluation. E.g., Gaussian
• Invertible transformations
• Computing likelihoods also requires the evaluation of determinants of
𝑛×𝑛 Jacobian matrices, where 𝑛 is the data dimensionality
• Computing the determinant for an 𝑛×𝑛 matrix is 𝑂(𝑛#): prohibitively

expensive within a learning loop!
• Key idea: Choose transformations so that the resulting Jacobian matrix has

special structure. For example, the determinant of a triangular matrix is the
product of the diagonal entries, i.e., an 𝑂(𝑛) operation

34

Triangular Jacobian Matrix

35

all zeros

Thanks

36

