N It 75 2

5 s PEKING UNIVERSITY

Normalising Flow Models (Part 1)

Hao Dong

Peking University

N It 75 2

5 s PEKING UNIVERSITY

Normalising Flow Models (Part 1)

Hao Dong

Peking University

ey e 7)Y

PEKING UNIVERSITY

Where we are?

* Autoregressive Models
p(x1, x5, v, Xn) = PP (2 [P (x3|x1, X2) oo D (X | X100 X —1)
* Provide tractable likelihoods
* No direct mechanism for learning features

* Slow generation — Wavenet: 1 second audio takes 90 mins (200K samples)

e Variational Autoencoders
p(X) = Xz p(XI1Z)p(Z) or p(X) = [,p(X|Z)p(Z)dZ
e Can learn feature representations (via latent variables Z)
* Have intractable marginal likelihoods.
* Optimising a lower bound — it is not maximising the likelihood ... we don’t know the gap.

Question: Can we design a latent variable model with tractable likelihoods?
Yes! We can use normalising flow models. (Today)

(6 St 0 »
NET TS

PEKING UNIVERSITY

Reference slides

* Hung-vi Li. Flow-based Generative Model
 Stanford “Deep Generative Models”. Normalising Flow Models

N It 75 2

PEKING UNIVERSITY

* Background

* Generator
Change of variable theorem (1D)
Jacobian Matrix & Determinant
Change of variable theorem
 Normalising Flow

* Flow-based model

* Learning and inference

* Desiderata

> N7 >\ »
&) 4
: o J’ .ﬁ
'*;: a L 5HL 9y =
598 PEKING UNIVERSITY

* Background
* Generator

Generator

* A generator G is a network. The network maps a simple distribution
(for example, normal distribution) (z) to a complex data distribution
pc (%), which aims to be as close to real data distribution pg,¢4(x) as
possible.

Normal Pc (x)) Pdata (x)
Distribution . y
generator :
: “® - \
(z)

as close as possible |

PEIY, »

N at 7. . >4

A 5=
598 PEKING UNIVERSITY

Normal pe(x) . Paata(X)
Distribution : /
generator :
- “® - \
n(z) |

- as close as possible

«G* =arg mGaXZ?il lOQPG(xi)

* Normalising flow models directly optimise the objective function!

» Key idea: Map simple distributions (easy to sample and evaluate
densities) to complex distributions (learned via data) using change of
variables.

N It 7)Y

PEKING UNIVERSITY

I
Normal Pdaata(x) I
_ Distribution :
Autoregressive generator |
Autoencoder l
I
(z

() I } as close as possible :

Normal Normal '

Distribution Dlstrlbutlo

B @5

|
n(2) 7@ |
|

Flow-based Model

& =/ F2) »
& (P 4 g
> ' D
f;: a L 5 J s
598 PEKING UNIVERSITY

* Background

* Change of variable theorem (1D)

10

Ty »
NELFEE

PEKING UNIVERSITY

Change of Variable Theorem (1D)

* Let Z be a uniform random variable U[0,1] with density T,. What is

m,(1/2)?
- 1

eletX = f(Z) = 2Z + 1 and let py be its density. What is px(2)?

* WhenZ=1/2,X=2Z+1=2,so0does px(2) =my, (—;) =17
* No

* Solution:
* As Zis uniformin [0, 1], X is uniform in [1,3], sopx(2) = 1/2

11

a.("lx"'% >
NET TS

PEKING UNIVERSITY

Change of Variable Theorem (1D)

(2) n(z)dz =1
b

— > 7
*

G, 7 1™
x = f(2) PR 1
—27+1 ":“ p(x') = 2 m(z')

NS w [peodx=1

0.5

@ > X
1 x" 3

12

N e 7) F

s PEKING UNIVERSITY

Change of Variable Theorem (1D)

w(z") |
" _/57\ I
; > Z What are
Z their relations?
x = f(2) f ‘

p(x)

13

BLEEE]

PEKING UNIVERSITY

Change of Variable Theorem (1D)

When x = f(z) and function f is invertible and differentiable.

If f is monotonically increasing, we have Pr(z' <z < (z' + Az)) =
Pr(f(z)<f(2) <f(z +A2))=Pr(x' <x < (x' +Ax))

M A X NRHE, xFzz BT ABER 2 E R iR 2R

If f is monotonically decreasing, we can get the same result.

So we get
z'+Az x'+Ax
j n(z)dz| = f p(x) dx
Z

!/ xl

14

Change of Variable Theorem (1D)

2 n(z) da| = | [p(x) x|

* Use laGrange's Mean Value Theorem, we get
* 1(2)|Az| = p(%)|Ax]

 where
e 7' <Z<z + Az
ex' <x¥x<x"+4 Ax

* When Az — 0, we have

<o
= 11(2") ai

! ! A
p() =n(@) |
- x=x'

Change of variable theorem (1D)

& =/ F2) »
& N2 o
el ['ﬁ
r;: a = 5 & =
59t PEKING UNIVERSITY

15

N e 7) F

PEKING UNIVERSITY

Change of Variable Theorem (1D)

, == The blue square and the green
m(z) { square should be equal in area
— 7
/I < . . -

S “‘ 4
LTV Y pdiax] = r(z))az)

p(x,) : : ol u . a
s 3 : : s Z
x) =n(z") | =

lgod v o ==

xl

*—o— —o—
. * o
s * o
¥« ::

* * ®
) . *
0 . A
] .

L4 .

¥ .

16

N It 75 2

PEKING UNIVERSITY

Change of Variable Theorem (1D)

» change of variable theorem (1-D case): if x = f(z) and function f is

invertible and differentiable, thenp(x) = w(2) %ZC =1(z) or ;C(x)

* How about multi-dimension cases?
* We need more math background.

17

& =/ F2) »
& (P 4 g
> ' D
f;: a L 5 J s
598 PEKING UNIVERSITY

* Background

e Jacobian Matrix & Determinant

18

4

Iy &
RSITY

Jacobian Matrix (2D case)

I R I O ()

274
x=f(z) Z =f1(x)

X2/2] 1 X1
[xl x2/2 f ([xZI)
3) input 4) 1 1
] _ axl/azl axl/aZZI]f — 2 0
f axZ/aZ]_ axz/aZZ output 0 1/2
1 =
] _ azl/axl azl/ale 4 1 _1/2
7t = 622/5x1 OZZ/axz]f]f_l =]

& =/ F2) »
& (P 4
: 0 J‘ 'g
;: a L 5HL 9y =
598 PEKING UNIVERSITY

Determinant
The determinant of a square matrix is a scalar that provides

information about the matrix.
det(4) = ad —bc det(A) =

2 X2 *3x3
A10a509 +a,ag07+a3040ag

det(A) = 1/det(471)
det(]f) = 1/det(]f—1)

—da3dsgdy —a2a4a9—a1a6a8

20

N e 74 F

Determinant
«2 X2 33 [al 42 a3]
A=\|04 Qa5 AQag
_[a b a; ag Qg
. [c d Z

(a7:a8'a9)

.
a®

(ay, as, ag)

x 21

& =/ F2) »
& (P 4 g
> ' D
't;: a L 5 J,‘ =3
598 PEKING UNIVERSITY

* Background

* Change of variable theorem

22

N It 75 2

PEKING UNIVERSITY

Change of Variable Theorem (2D case)

Zy % X2 4
Axlz
Az, Ax!
(2" %
Pop(x)
Az, o Axzq
@ ... :
> Z1 A9C11 > X1
Ax11 AX21
(x") |det] =n(z')Az,Az,
p Ax12 szz

23

p(x')

!/ d t] !/
p(x) Az,Az, ¢ Ax1, m(z’)

Axq1/Azy Axyq/Azy ,
=mn(z')
Axlz/AZZ AXzz/AZZ

—axl/azl axZ/aZ]__ _ p
axl/aZZ axZ/aZZ - 7T(Z)

_axl/azl axl/aZZ—

p(x") |det

p(x") |det

p(x") |det 0x,/02, 9%,/07, =m(z') (transpose)
p(x’)|det(]f) =1(z") () = 1(2') 1 |
p(x") =mn(z") det(]f—1)| det(]f) .

N It 7 5 2

PEKING UNIVERSITY

Change of Variable Theorem (General case)

* Change of Variable Theorem (General case): if the mapping function
between Z and X, given by f: R™ — R", is differentiable and invertible
suchthat X = f(Z) and Z = f~1 (X), then

dett ax(x) = 1(2)|det(J ;)]

* Note 1: x and z need to be continuous and have the same dimension
* Note 2: since for any invertible matrlx A, det(A™1) = det(4)~?

p(.X') — T[(Z) |d t(]f)‘

p(x) = n(2)

& =/ F2) »
& S =4 g
> 2 J D
‘f;: a t X > > T
598 PEKING UNIVERSITY

 Normalising Flow
* Flow-based model

26

p(:)|det(Jy)| = 7(2")

Flow-based Model p(x") = n(z")|det(J;-1)

Normal
Distribution

m(z) gene(;’ator — o ’

100 x 100 x 3

m
G* =arg mélxz logpc (xi)

=1

pe(x)

G has limitation

=

pG(xi) = n(zi)ldet(/G—1)| »

7t = 671(x%) »

You can compute det(J;)

You know G 1

long(xi) = logm (G‘l(xi)) + log|det(J ;-1)|

ZIN) Z J’ 4
-?:5 ez X2

PEKING UNIVERSITY

27

4

I &

PEKING UNIVERSITY

G is limited. We need more generators

p1(x) p2(X) p3(x)
-0 *ﬂ*i?*ﬂ*&
pi(xt) = n(z") (|det(Jg1)|) 2t =672 (- 6x1(xh))

o () = (e (dec(c:))(\det(o))

() = () (dee) (Jet 1))
logpk (xt) = logn(zt) + Zh=1 log ‘det(GE1)

Maximise

ZIN) at 7 J Y.

| =

o = X' > T
5§98

PEKING UNIVERSITY

What you actually do? ~

logpg(x') = logm G‘l(xi)) + 1)
If z is zero, this term

will be -inf

This term: make z, If z is always zero:
become zero
vector

J -1 would be zero matrix
det(IG—l) = 0

Actually, we train G1, but we use G for generation.

Daata(X) 7

& =/ F2) »
& (P 4 g
> ' D
't;: a L 5 J,‘ =3
598 PEKING UNIVERSITY

 Normalising Flow

* Learning and inference

30

N It 7 5 2

PEKING UNIVERSITY

Learning and inference

* Learning via maximum likelihood over the dataset D

0Gg ™ (x)

|] — _1 9

max logn(D; 0) = EED logm (Gg (x))+log det(7)
X

* 1) Exact likelihood evaluation via inverse transformation and change
of variables formula

* 2) Sampling via forward transformation Gg: Z —» X
z~1(z),x = Gg(2)
 3) Latent representations inferred via inverse transformation (no
inference network required!)
z = Gy (x)

N It 7 5 2

PEKING UNIVERSITY

Normalising Flow

* “Normalising” means that the change of variables gives
a normalised density after applying an invertible transformation.

* “Flow” means that the invertible transformations can be composed
with each other to create more complex invertible transformations.

& =/ F2) »
& S =4 g
> 2 J D
'f;: a t X > > T
598 PEKING UNIVERSITY

 Normalising Flow

e Desiderata

33

N It 7 5 2

PEKING UNIVERSITY

Desiderata for flow models

* Simple prior m(z) that allows for efficient sampling and tractable
likelihood evaluation. E.g., Gaussian

* Invertible transformations

* Computing likelihoods also requires the evaluation of determinants of
nXxXn Jacobian matrices, where n is the data dimensionality

 Computing the determinant for an nxXn matrix is 0 (n>): prohibitively
expensive within a learning loop!

* Key idea: Choose transformations so that the resulting Jacobian matrix has
special structure. For example, the determinant of a triangular matrix is the
product of the diagonal entries, i.e., an O(n) operation

& UNT "4-* } g

> 0 J’ D

'*;: a L 5Hf79' =
55s” PEKING UNIVERSITY

Triangular Jacobian Matrix

X= (Xla U ’Xn) - f(z) = (fl(z)v Tt =fn(z))

on .. oA

8'? 0z1 0z
J=—=| i sz se
0z \ ot .. of
821 aZn

Suppose x; = fj(z) only depends on z<;. Then

of "

has lower triangular structure. Determinant can be computed in linear
time. Similarly, the Jacobian is upper triangular if x; only depends on z>;

all zeros

35

> N7 >\ »
&) 4
: o J’ .ﬁ
'*;: a L 5HL 9y =
598 PEKING UNIVERSITY

Thanks

36

