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Definition of Autoregressive Models

𝑦! = 𝑐 + 𝜙"𝑦!#" + 𝜙$𝑦!#$ +…+ 𝜙% 𝑦!#% + ɛ! , ɛ!~N(0, 𝜎$)

Put simply, an autoregressive model is merely a feed-forward model which predicts 
future values from past values:

The term autoregressive originates from the literature on time-series models 
where observations from the previous time-steps are used to predict the value at 
the current time step.

𝑦& could be:
The specific stock price of day 𝑖…
The amplitude of a simple pendulum at period 𝑖…
Or any variable that depends on its preceding values!



Two examples of data from autoregressive models with a few different parameters. 
Left: AR(1) with yt=18−0.8yt−1 + εt. Right: AR(2) with yt=8+1.3yt−1−0.7yt−2 + εt.

Defini3on of Autoregressive Models

𝑦! = 𝑐 + 𝜙"𝑦!#" + 𝜙$𝑦!#$ +…+ 𝜙% 𝑦!#% + ɛ! , ɛ!~N(0, 𝜎$)
Autoregressive Models have a strong ability in data representation. 



Definition of Autoregressive Models
Autoregressive Models have a strong ability in data representation. 

• Regression

• Generation

• Prediction



Prior Knowledge

+
Learning

dataset 𝒟

Recap: Statistical Generative Models

Sampling from p(x) generates new images 7

𝑥𝑥1 𝑥2 𝑥3 𝑥4

𝑥3 is a 64x64x3 high dimensional vector  
representing a woman with blonde hair.

𝑝𝑑𝑎𝑡𝑎(𝑥) 

The probability  
density value is  

very high

Model family, loss function,  
optimisation algorithm, etc.
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Recap: Challenge of Generative Models

Suppose x1,x2,x3 are binary variables. P(𝑥#, 𝑥$, 𝑥%) can be specified with (23 - 1) =7  parameters

Too many possibiliOes! 

n Compactness

Main idea: write as a product of simpler terms

Main challenge: distributions over high dimensional objects is actually very sparse!!

What about a  28×28 black/white digit image?

2$&×$& − 1 = 2(&) − 1 ≈ 10$%* parameters!

But with only 10 peaks of 0, 1, 2, … 9
𝑂(2𝑛)



Recap: Challenge of Generative Models

n Solution #1: Factorisation

Definition of conditional probability:

𝑃(𝑥!, 𝑥") = 𝑃(𝑥!) 𝑃(𝑥"|𝑥!)

Product rule:
𝑃 𝑥#, 𝑥$, … , 𝑥+ =.

,-#

+

𝑝.(𝑥,|𝑥/,)

Divide and conquer ! We can solve the joint distribution 𝑃(𝒙) by 

solving simpler conditional distributions 𝑝#(𝑥$|𝑥%$) one by one 

It’s hard to exactly modelling every condiOonal distribuOon 

Still complex!!

Can you tell the exact 
likelihood of the next pixel 
(noted as a red point) 
conditioned on the given 
pixels?



Recap: Challenge of Generative Models

Solution #2a: use simple functions to form the conditionals

𝑃(𝑥!|𝑥", 𝑥#, 𝑥$) ≈ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊"𝑥" +𝑊#𝑥# +𝑊$𝑥$)

◦ Only requires storing 3 parameters

◦ Relationship between 𝑥$ and (𝑥%, 𝑥#, 𝑥&) could be too simple

x1

x2

11
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x3

x4

Neural network

sigmoid functionSolution #2b: use more complex functional form Neural network

𝑍" = 𝑓""(𝑥", 𝑥#, 𝑥$), 𝑍# = 𝑓"# 𝑥", 𝑥#, 𝑥$ , 𝑍$ = 𝑓"$ 𝑥", 𝑥#, 𝑥$

𝑌" = 𝑓#"(𝑍", 𝑍#, 𝑍$), 𝑌# = 𝑓##(𝑍", 𝑍#, 𝑍$), 𝑌$ = 𝑓#$ 𝑍", 𝑍#, 𝑍$ …

𝑃(𝑥!|𝑥", 𝑥#, 𝑥$) ≈ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊"𝑌" +𝑊#𝑌# +𝑊$𝑌$… )

◦ More flexible

◦ More parameters

◦ More powerful on fitting data

finally, it’s possible to model the data distributions!

Sigmoid function 
can be used to 
binarize the output 



• Definition of Autoregressive Models (Ⅰ)

• Challenge of Generative Models

• Definition of Autoregressive Models (Ⅱ)

• Learning and Inference of Autoregressive Models

• Examples of Autoregressive Models

• Fully Visible Sigmoid Belief Network (FVSBN)

• Neural Autoregressive Density Estimation (NADE)

• Masked Autoencoder for Distribution Estimation (MADE)

• PixelRNN,  PixelCNN, WaveNet….

12



• Graph model: Directed, fully-observed Bayesian network

• Key idea: Decompose the joint distribution as a product of tractable conditionals

13

Definition of Autoregressive Models
However, by defining !𝑥& , the output of step 𝑖 , as a random variable that follows 
the conditional distribution based on previous inputs 𝑥", 𝑥$…𝑥&#", we get the 
probability model, which can present the joint distribution of 𝑝' 𝑥", 𝑥$, … 𝑥(

*𝑥$ = 𝑝# 𝑥$ 𝑥!, 𝑥", … , 𝑥$:!

𝑝. 𝒙 =.
,-#

+

𝑝.(𝑥,|𝑥#, 𝑥$, … , 𝑥,0#) =.
,-#

+

𝑝.(𝑥,|𝑥/,)



WaveNet animation. Source: Google DeepMind.Obligatory RNN diagram. Source: Chris Olah.

Relationship with RNN:
Like an RNN, an autoregressive model’s output ℎ;,at time 𝑡 depends on not just 𝑥;, but also 
𝑥!, 𝑥", … , 𝑥$:! from previous time steps.
However, unlike an RNN, the previous 𝑥!, 𝑥", … , 𝑥$:! are not provided via some hidden 
state: they are given just as an input to the model.

Definition of Autoregressive Models



• Definition of Autoregressive Models (Ⅰ)

• Challenge of Generative Models

• Definition of Autoregressive Models (Ⅱ)

• Learning and Inference of Autoregressive Models

• Examples of Autoregressive Models

• Fully Visible Sigmoid Belief Network (FVSBN)

• Neural Autoregressive Density Estimation (NADE)

• Masked Autoencoder for Distribution Estimation (MADE)

• PixelRNN,  PixelCNN, WaveNet….

15



Learning and Inference of Autoregressive Models

16

• Learning to maximise the model log-likelihood over the dataset !

Tractable: 
The distribu:on is simple enough to be modeled explicitly.

Tractable condi:onals make condi:onal distribu:on learning meaningful,
and thus allow for exact likelihood evalua:on.

min
#∈=

𝑑>? 𝑝@A;A, 𝑝# = min
#∈=

EB~D1232 log pEFGF x − log p# x ∝ max
#∈=

𝐸H~I4565 log 𝑝#(𝑥)

max
#

log 𝑝# 𝐷 = =
H∈J

log 𝑝# 𝒙 = =
H∈K

=
$L!

M

log 𝑝#(𝑥$|𝑥%N)



Learning and Inference of Autoregressive Models
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• Inference samples each variable of one data from estimated conditional 
distributions step by step, until  the whole data is generated.

Ancestral sampling:
A process of producing samples from a probabilistic model.
First sample variables which has no conditional constraints using their prior 
distribution.  𝑥"~𝑝'(𝑥")
Then sample child variables using conditional distribution based on their 
parents and repeat so on. 𝑥$~𝑝' 𝑥$ 𝑥")……

The attribute of Autoregressive Models that directly model and output distributions 
allows for  ancestral sampling.



Learning and Inference of Autoregressive Models
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Differences between Autoregressive models (AR), VAE and GAN:

GAN model doesn’t define any distribution, it adapts discriminator to learn 
the data distribution implicitly. P(X, Z) = P(X|Z)P(Z)
VAE model believes the data distribution is too complex to model directly, 
thus it tries to learn the distribution by defining an intermediate distribution 
and learning the map between the defined simple distribution to the 
complex data distribution.  P(X, Z) = P(X|Z)P(Z)
AR model on the one hand assumes that the data distribution can be 
learned directly (tractable), then it define its outputs as conditional 
distributions to solve the generation problem by directly modeling each 
conditional distribution. 



Learning and Inference of Autoregressive Models
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Conclusion:
1. Using complex networks, each step Autoregressive Models output an approximated 
complex condiOonal distribuOon  *𝑥$ = 𝑝# 𝑥$ 𝑥!, 𝑥", … , 𝑥$:!

2. Taking in the previous inputs 𝑥!, 𝑥", … , 𝑥$:! and the next input 𝑥$ by sampling 
previous esOmated condiOonal distribuOon *𝑥$ , Autoregressive Model is able to generate 
all condiOonal distribuOons iteraOvely
𝑥!~𝑃# 𝑥! , 𝑥"~𝑃# 𝑥" 𝑥! , 𝑥O~𝑃# 𝑥O 𝑥!, 𝑥" , … 𝑥M~𝑃#(𝑥M|𝑥!, … , 𝑥M:!)

3. Product rule makes sure the generated data that made up of sampled result 𝑥$ from 
each step follows the data distribuOon.

𝑥!, 𝑥", … , 𝑥M ~?
$L!

M

𝑝#(𝑥$|𝑥%$)
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Fully Visible Sigmoid Belief Network (FVSBN)

The conditional variables xi | x1   ,..., xi−1 in FVSBN are Bernoulli with parameters.

FVSBN

l the fully visible sigmoid belief network without any hidden units is denoted FVSBN.

𝑥O𝑥! 𝑥" 𝑥P

Gan Z , Henao R , Carlson D , et al. Learning Deep Sigmoid Belief Networks with Data Augmentation[C]// Artificial Intelligence and Statistics (AISTATS). 2015.

• σ denotes the sigmoid function

denotes the parameters

4𝑥, = 𝑝 𝑥, = 1 𝑥1, 𝑥2,…𝑥,0# = 𝑓, 𝑥#, 𝑥$, … , 𝑥,0#; 𝛼,

= 𝜎(𝛼7
, + 𝛼#

, 𝑥# +⋯+ 𝛼,0#
(,) 𝑥,0#)

Some conditionals are too complex. So FVSBN assume:

𝛼( = {𝛼)
((), 𝛼"

((), … , 𝛼(,"
(() }

• The conditional for variable xi requires i parameters, and hence 
the total number of parameters in the model is given by 
∑(-"
. 𝑖 = 𝑂 𝑛# ≪ 𝑂(2.)



FVSBN Example

• Suppose we have a dataset D of handwritten digits (binarised MNIST)

• Each image has n = 28×28x1 = pixels. Each pixel can either be black (0) or 
white (1). 

• We want to learn a probability distribution 𝑝 𝑥 = 𝑝(𝑥", … , 𝑥#$%) over 𝑥 ∈
0,1 #$%such that when 𝑥~𝑝(𝑥), 𝑥 looks like a digit. 

• Idea: define a FVSBN model , then pick a good one based on training data D. 
(more on that later) 



FVSBN Example

• We can pick an ordering, i.e., order variables (pixels) from top-left (𝑥") to 
bottom-right (𝑥)*+). 
• Use product rule factorisation without loss of generality:

𝑝(𝑥",··· , 𝑥)*+) = 𝑝 𝑥" 𝑝 𝑥$ 𝑥")𝑝(𝑥, | 𝑥", 𝑥$)
··· 𝑝 𝑥)*+ 𝑥",··· , 𝑥)*,)

• FVSBN model assume: (less parameters)

• Note: This is a modelling assumption. We are using a logistic regression to 
predict next pixel distribution based on the previous ones. Called 
autoregressive.

!𝑥& = 𝑝 𝑥& = 1 𝑥1, 𝑥2,…𝑥&#" = 𝑓& 𝑥", 𝑥$, … , 𝑥&#"; 𝛼&

= 𝜎(𝛼-
& + 𝛼"

& 𝑥" +⋯+ 𝛼&#"
(&) 𝑥&#")



FVSBN Example

• How to evaluate 𝑝(𝑥!,··· , 𝑥"#$) i.e. density estimation? Multiply all the conditionals (factors) 
In the above example: 

𝑝 𝑥# = 0, 𝑥$ = 1, 𝑥% = 1, 𝑥) = 0
= 𝑝 𝑥# = 0 𝑝 𝑥$ = 1 𝑥# = 0 𝑝 𝑥% = 1 𝑥# = 0, 𝑥$ = 1 𝑝 𝑥) = 0 𝑥# = 0, 𝑥$ = 1, 𝑥% = 1
= 1 −;𝑥# ×;𝑥$×;𝑥%×(1 − ;𝑥))

• How to sample from 𝑝(𝑥!,··· , 𝑥"#$) ?
1. Sample 𝑥!~𝑝(𝑥!) (𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑐ℎ𝑜𝑖𝑐𝑒([1,0], 𝑝 = [8𝑥!, 1 − 8𝑥!])) 
2. Sample 𝑥%~𝑝(𝑥%|𝑥! = 𝑥!)
3. Sample 𝑥&~𝑝(𝑥&|𝑥! = 𝑥!, 𝑥% = 𝑥%)
···

binary hidden variables

ia

𝑥!

@𝑥O

𝑥" 𝑥O 𝑥O

@𝑥! @𝑥" @𝑥P
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NADE: Neural Autoregressive Density Estimation

Improve FVSBN: use one hidden layer neural network 
instead of logistic regression 

Tie weights are shared to reduce the 
number of parameters and speed up
computa4on
(see blue dots in thefigure)

ia
xi = vi

Uria B, Côté M A, Gregor K, et al. Neural autoregressive distribution estimation[J]. The Journal of Machine Learning Research, 2016, 17(1): 7184-7220.

𝒉𝒊 = 𝜎 𝐴$𝒙%𝒊 + 𝒄𝒊
*𝒙𝒊 = 𝑝 𝑥$ 𝑥!, 𝑥"…𝑥$:!; 𝐴$ , 𝒄𝒊, 𝜶𝒊, 𝑏$)=𝜎(𝜶𝒊𝒉𝒊 + 𝑏$)

parameters



NADE: Neural Autoregressive Density Estimation

𝜃𝑖 = {𝐴$ ∈ 𝑅@× $:! , 𝒄𝒊 ∈ 𝑅𝑑, 𝜶𝒊 ∈ 𝑅𝑑, 𝑏𝑖 ∈ 𝑅}
are the set of parameters .

The total number of parameters in this model is dominated by the matrices {𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏}
given by O(n2d).

Sharing parameters: Tie weights are shared to reduce the number of parameters and 
speed up computaOon. —> O(nd).

𝒉𝒊 = 𝜎 𝐴$𝒙%𝒊 + 𝒄𝒊
*𝒙𝒊 = 𝑝 𝑥$ 𝑥!, 𝑥"…𝑥$:!; 𝐴$ , 𝒄𝒊, 𝜶𝒊, 𝑏$)

= 𝑓$ 𝑥!, 𝑥", … , 𝑥$:! = 𝜎(𝜶𝒊𝒉𝒊 + 𝑏$)

𝒙%𝒊 ∈ 𝑅$:!, denotes the vector made of 
preceding 𝑥s

𝒉𝒊 ∈ 𝑅@ , denotes the hidden layer 
activations of the MLP



Performance on the MNIST dataset. (Left) Training data. (Middle) Averaged synthesised 
samples.  (Right) Learned features at the bottom layer.

FVSBN

NADE

Generate samples

Learned Features



Generate other distributions

• How to model non-binary discrete random variables Vi ∈{1, …K }? E.g., pixel  intensities 
varying from 0 to 255?

• Softmax generalises the sigmoid/logistic function σ(·) and transforms
a vector of K numbers into a vector of K probabilities (non-negative, 
sum to 1).

• One solution: Let  *𝐯𝐢 parameterise a categorical distribution

𝒉𝒊 = 𝜎 𝐴$𝒗%𝒊 + 𝒄𝒊

*𝐯𝒊 = 𝑝 𝑣$ 𝑣!,… , 𝑣$:! = (𝑝$!, 𝑝$"… ,𝑝$
_)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑈$𝒉𝒊 + 𝒃𝒊

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒂 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑎", … , 𝑎/ = (
exp 𝑎"

∑( exp 𝑎(
, … ,

exp 𝑎/

∑( exp 𝑎(
)



Generate other distributions

• How to model continuous random variables Vi ∈R?   E.g., speech signals ? 

• One soluOon: Let  *𝐯𝒊 parameterise a conOnuous distribuOon
E.g., uniform mixture of K Gaussians

𝒉𝒊 = 𝜎 𝐴$𝒗%𝒊 + 𝒄𝒊

*𝐯𝒊 = 𝑓 𝒉𝒊 = 𝜇$!,… , 𝜇$>, 𝜎$!,…𝜎$>

𝑝 𝑣$ 𝑣!,… , 𝑣$:! ==
fL!

>
1
𝐾
(𝒩(𝑣$; 𝜇$

f, 𝜎$
f))
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Autoregressive model vs. Autoencoders

• FVSBN and NADE look similar to an Autoencoder.

• An encoder e(·), E.g., 𝑒(𝑥) = 𝜎(𝑊" 𝑊!𝑥 + 𝑏! + 𝑏")
• A decoder such that 𝑑 𝑒 𝑥 ≈ 𝑥

Binary:

min
g:,g;,h:,h;,i,j

=
H∈K

=
$

(−𝑥$ log *𝑥$ − 1 − 𝑥$ log(1 − *𝑥$))

Continuous:  

min
g:,g;,h:,h;,i,j

=
H∈K

=
$

𝑥$ − *𝑥$ "

• Encoder: feature learning
• A vanilla autoencoder is not a generative model: it does not define a distribution 

over 𝑥 we can sample from to generate new data points.



Autoregressive model vs. Autoencoders

• FVSBN and NADE look similar to an autoencoder. 

• Can we  get a generative model from an Autoencoder?

？？

A dependency order constraint is 
required for Autoencoder to make it a 
Bayesian Network.

VS



Autoregressive model vs. Autoencoders

• To get an autoregressive model from an Autoencoder,

• we need to make sure it corresponds to a valid Bayesian Network, 

so we need an ordering. If the ordering is 1,2,3, then:

• @𝑥! cannot depend on any input x. 

• @𝑥" can only depend on 𝑥!.

• @𝑥O can only depend on 𝑥!, 𝑥".

• Bonus: we can use a single neural network (with n outputs) to 

produce all the parameters. In contrast, NADE requires n passes. 

Much more efficient on modern hardware.



MADE: Masked Autoencoder for Distribution Estimation

Mathieu M. Masked Autoencoder for Distribution Estimation[J]. 2015.

Masked Autoencoder

Use Masks to constraint dependency paths!
Each output unit is an esOmated distribuOon, it only depends on the inputs with 
orderings that before its chosen ordering

With the order 𝑥",𝑥O,𝑥!:

1. 𝑝(𝑥")doesn’t depends 
on any input

2. 𝑝(𝑥O|𝑥")depends on 
input 𝑥"
3. 𝑝(𝑥!|𝑥", 𝑥O)depends 
on input 𝑥" , 𝑥O



Performance on the MNIST dataset. 
(Left) : Samples from a 2 hidden layer MADE
(Right): Nearest neighbor in binarized MNIST

MADE

Generate samples



Autoregressive Models in NLP

Natural language generation (NLG) is one of the important research fields of Artificial 

Intelligence, including text-to-text generation, meaning-to-text generation and image-to-

test generation etc.

However, every time generating a word, it’s always helpful to consider text that already 

generated! Thus Autoregressive Model is widely adopted in NLP.

Examples of powerful GPT-2 model 
generating “First Law Of Robotics”



Appendix A —Taxonomy of Generative Models
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Thanks
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