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From Data Point of View

Data in both input x and output y
with known mappings
(Learn the mapping f)

Q0000
Q0000

y=f()
Supervised Learning
» Image classification
* Object detection
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Data in both input x and output y
without known mappings
(Learn the mapping f)

0000
0000

y=71()
Unsupervised Learning
* Autoencoder

(when output is features)
* GANs
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From Data Point of View

Data in both input x and output y Data in both input x and output y
with known partial mappings with known mappings for y
(Learn the mapping f) (Learn the mapping f for another output y")

O O

o O
o O
y = f(x) y'=f(x)

Semi-supervised Learning Weakly-supervised Learning
. .. * Learn segmentation via classification

0000
0000
©000O0
O
O
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From Data Point of View

PN learning PN'' learning P learning
(i.e., supervised learning) (i.e., semi-supervised learning) weakly-supervised learning
O o O
O X O X o
O (@) O
(o) X X o) X 0OX (o)
X x
O o o
x x
P & N data are P, N & ' data are P & ' data are
available for training available for training available for training
O : positive data X : negative data

From https://niug1984.github.io/paper/niu_tdlw2018.pdf
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From Mapping Point of View

Data in both input and output Data in input x, x" only Data in input only
(Learn the mapping f, f) with known mapping f’ with known inverse mapping f’
X y (Learn the mapping f) (Learn the mapping f and output y)
O ® ‘o O
O © © *Q O
O © © = @ O
O o Y e
y=[f),x=f) x" = f(x) y=10)x=f()
(Unsupervised) Dual Learning Self-supervised Learning Self-augmented Learning
 VAE * Word2Vec . ?
* CycleGAN * Denoising Autoencoder
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Application of Generative Models: Learning Methods

* Unsupervised Learning

* Semi-supervised Learning

* Weakly-supervised Learning
* Dual Learning

e Self-supervised Learning

e Self-augmented Learning
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* Unsupervised Learning
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Unsupervised Learning

Data in both input x and output y
(Learn the mapping f)

* In practice, it is difficult to obtain a large amount of labelled
data, but it is easy to get a large amount of unlabeled data.

* Learn a good feature extractor using unlabelled data and
then learn the classifier using labelled data can improve the
performance.

0000
0000

y=[f(x)

Unsupervised Learning



Unsupervised Learning

reduction, and anomaly detection.

* Clustering: EM

* Dimension Reduction: PCA
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Unsupervised learning is about problems where we don’t have labelled answers, such as clustering, dimensionality
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Unsupervised Learning

 Autoencoder

Original
input

Input image

Autoencoder: Encode the input image x into a hidden state, then decode the latent space
representation into a image x. Then minimize the reconstruction loss between x and x.

Encoder

i

Compressed

(when the output is extracted features)

Decoder

-2

Reconstructed

representation

Latent Space
' ._ Representation

input

Reconstructed image
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Unsupervised Learning

* GANS

< I B
EETad
pete @ vhy
W | |

Real image

Training set Discriminator
[, N Real
Random A T I @ — {Fak .  Update the discriminator - ascending gradient:
3 — o 1 m . '.
- [jl Yok 3" [togD (+©) +108 (1 - D (6 (x0)))].
. m <
Generator ~.. Fake image i=

Update the generator - descending gradient:

%%gm@quw»)

https://pathmind.com/wiki/generative-adversarial-network-gan "
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Unsupervised Learning

* HoloGAN: learn the rotation concept

12

HoloGAN: Unsupervised learning of 3D representations from natural images. NIPS 2019



Unsupervised Learning

e HoloGAN: How it works

Prior knowledge
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RenderNet: 3D to 2D

() PPN £ ) ™

o M ™M - e = . .
LN x x x x x x x
s . R 2 . e, R 2
BN BEINEE 3D S RIE E & & &
& d Bl K o Bl K TRANSFORM L d L Q Q S
@ 2]~ == = = > > >
2| |5 5 C 5 5 5 = £
S| AL d 131 JL3) s s 5
/L A y € A o y € y

Camera pose S

HoloGAN: Unsupervised learning of 3D representations from natural images. NIPS 2019 "
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* Semi-supervised Learning

14
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Semi-supervised Learning

 Motivation:
Data in both input x and output y * Unlabelled data is easy to be obtained

with known partial mappings « Labelled data can be hard to get
(Learn the mapping f)

O
O
O

* Goal:
* Semi-supervised learning mixes labelled and
labelled data to produce better models.

 vs. Transductive Learning:
Q * Semi-supervised learning is eventually applied
Q to the testing data

* Transductive learning is only related to the
y = f(x) unlabelled data

Semi-supervised Learning

0000

15



Semi-supervised Learning

* Semi-supervised GAN

Generator
Noise
i '| :u" Al
ity
] | |
Unlabeled
(.
Labeled

https://jostosh.github.io/ssl-gan/
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Discriminator
. Labels Classify the real data supervised learning
] (a Softmax output distribution for
) "Fake" which we minimize the cross-

entropy)
real/fake: Adversarial learning

* The labelled data would be used to optimise the classification
performance.
* The unlabelled data will be used to merely tell fake from real.

16
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Semi-supervised Learning

Discriminator Output

* Semi-supervised GAN

. o cls cls cls
* Discriminator |OSS 1 2 k
fake §
real
Z(x) _ Z(x)

the probability of it being real:  p(x) = Z00) + exp(lrae) 1+ Z(x)
fake

where Z(x) is the sum of the unnormalised probabilities in the softmax operation.
log(Z(x)) = logsumexp(ly, ..., I )

Gradient descent: —log(D(x)) —log(1 — D(G(2)))
= —log( ) —log(1 - 2@ )
1+ Z(%) 1+ Z(G(2)

17
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Semi-supervised Learning

 Example: 2D Video to 3D shape N
Lyp, Lsp :supervision from

The model can learn from videos with only 2D pose annotations in a semi- ground-truth
supervised manner.

H Vu

g ¢ \  Losses
resnet .
] o /} Laav prior: €ach prior
= % | ° t— O] ) Lo discriminator judge a
' , $ _ corresponding joint
L]
k (bt y_ .
“ — rcsnct'—’%— fmovie P, f3D — @t g \ rotation of the body model
u TR S (Du©) — 1)
: SRS, ' k K(O) — 1)
{‘E % far ™ Oppat \
resnet D {\"“v
] hallucinator /
— » h —( o, > || — By make sure that the
\ hallucinator can recover the
train a temporal encoder f,,ovie that learns a representation of 3D human current 3D mesh as well as
dynamics @, over the temporal window centered at frame t its 3D past and future
motion.

18
Learning 3D Human Dynamics from Video. A. Kanazawa, J. Zhang et al. CVPR, 2019
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Semi-supervised Learning

 Example: 2D Video to 3D shape

From a single image, the model can recover the current 3D mesh as well as its 3D past and future motion.

L’t — L‘ZD + L’3D + La(lv prior + L;‘B prior

T-1
Lconst shape — Z HBt = /3t+1||- Ltemporal = E Lt + E Lt+At + Lconst shape -
t=1 t At

19
Learning 3D Human Dynamics from Video. A. Kanazawa, J. Zhang et al. CVPR, 2019
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* Weakly-supervised Learning

20
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Weakly-supervised Learning

Data in both input x and output y
with known mapping for y
(Learn the mapping f for another output y")

* Weakly supervised learning is a machine learning framework
where the model is trained using examples that are only
partially annotated or labeled.

0000
Q0000
0000

y' = f(x)

Weakly-supervised Learning

21
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Weakly-supervised Learning

e Attention CycleGAN
* Learn the segmentation via synthesis
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Weakly-supervised Learning

e Attention CycleGAN
* Learn the segmentation without segmentation masks

23
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Weakly-supervised Learning

* Semantic Image Synthesis: Language Image Manipulation

4 Ayellow bird with  _
grey wings.

A red bird with blue _

head has grey wings.

This flower has white
4 petals with yellow =
round stamens.

This beautiful
4+ flower hasmany =
red ruffled petals.

24
Semantic Image Synthesis via Adversarial Learning. H. Dong, S. Yu et al. ICCV 2017.
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Weakly-supervised Learning

* Semantic Image Synthesis: Language Image Manipulation

this striking bird has a mostly black body A
this is a black bird with a yellow breast and head. t : matching text
this bird has a bright yellow head and breast IE EEE’\] /EU %

> t : mismatching text
: R AT

L/ J

=
+
~>

> t : semantically relevant text

R aT

©0 00 O0-
OO0 O0O0-
0000

25
Semantic Image Synthesis via Adversarial Learning. H. Dong, S. Yu et al. ICCV 2017.



ez X%
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* Semantic Image Synthesis: Learn the segmentation via synthesis
x=G(x, ¢(0)
A bird with red head and breast. A bird with red head and breast.
@(t) é 70
X
D(%, ¢())
Residual Transformation Unit
Encoder Decoder Discriminator
\ )
Gener‘ator
64x64 with VGG 256x256 Difference 64x64 with VGG 256x256 Difference
A black bird with The petals are purple
ared head. with no visible stamens.
This small yellow The petals are white
bird has grey and the stamens are
wings, and a black yellow.
bill.
26

Semantic Image Synthesis via Adversarial Learning. Dong, H., Yu, S., Wu, C., Guo, Y. 2017. ICCV
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* Dual Learning

27
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Dual Learning

e Motivation

Data in both input and output * Human label is expensive
(Learn the mapping f, f) * No feedback if using unlabeled data

Application Primal Task Dual (Inverse) Task

Machine translation Translate language from A to B Translate language from B to A
Speed processing Speech to text (STT) Text to speech (TTS)

Image understanding Image captioning Image generation
Conversation engine Question Answer

Search engine Search Query

©0 000+
© 0000~

y=/@),x=[f()
(Unsupervised) Dual Learning
28
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Dual Learning

* Language Translation

En->Ch translation
model f

Chinese sentence

y1=f(x)

¢ Ch->En translation
model g

Feedback signals during the loop:
* s(x,x;): BLEU score of x; given x
* L(y) and L(x;): Likelihood and language model of y; and x;

English sentence x

Reinforcement learning is used to improve the translation

models from these feedback signals

Dual Learning for Machine Translation. 29
Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, Wei-Ying Ma. NIPS, 2016



https://arxiv.org/search/cs%3Fsearchtype=author&query=Xia%252C+Y
https://arxiv.org/search/cs%3Fsearchtype=author&query=He%252C+D
https://arxiv.org/search/cs%3Fsearchtype=author&query=Qin%252C+T
https://arxiv.org/search/cs%3Fsearchtype=author&query=Wang%252C+L
https://arxiv.org/search/cs%3Fsearchtype=author&query=Yu%252C+N
https://arxiv.org/search/cs%3Fsearchtype=author&query=Liu%252C+T
https://arxiv.org/search/cs%3Fsearchtype=author&query=Ma%252C+W
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* Language Translation

BLEU score: French->English
32

30
28
26
24
22
20

NMT with 10% Dual learning with 10%  NMT with 100%
bilingual data bilingual data bilingual data

Starting from initial models obtained from only 10% bilingual data,

dual learning can achieve similar accuracy as the NMT model learned
from 100% bilingual data!

Dual Learning for Machine Translation. 30
Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, Wei-Ying Ma. NIPS, 2016



https://arxiv.org/search/cs%3Fsearchtype=author&query=Xia%252C+Y
https://arxiv.org/search/cs%3Fsearchtype=author&query=He%252C+D
https://arxiv.org/search/cs%3Fsearchtype=author&query=Qin%252C+T
https://arxiv.org/search/cs%3Fsearchtype=author&query=Wang%252C+L
https://arxiv.org/search/cs%3Fsearchtype=author&query=Yu%252C+N
https://arxiv.org/search/cs%3Fsearchtype=author&query=Liu%252C+T
https://arxiv.org/search/cs%3Fsearchtype=author&query=Ma%252C+W
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Dual Learning

* Unpaired Image-to-Image Translation

Zebras T Horses

zebra —) horse

et

horse — zebra

31

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. J. Zhu, T. Park et al. ICCV 2017.
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e Self-supervised Learning

32



Self-supervised Learning

Data in input x, x" only
with known mapping f’
(Learn the mapping f)

_____

_____

_____

[

x' = f(x)

Self-supervised Learning

N e 7.5

PEKING UNIVERSITY

Self-supervised learning is autonomous supervised
learning, it learns to predict part of its input from
other parts of its input.

Examples: Word2Vec, Denoising Autoencoder

Self-supervised vs. unsupervised learning: Self-
supervised learning is like unsupervised Learning
because the system learns without using explicitly-
provided labels. It is different from unsupervised
learning because we are not learning the inherent
structure of data. Self-supervised learning, unlike
unsupervised learning, is not centered around
clustering and grouping, dimensionality reduction,
recommendation engines, density estimation, or
anomaly detection.

33
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Self-supervised Learning

* Denoising Autoencoder

f(x)
SESE
1
1
x'=xA4z
r- - \; _____ \
@00 T 00@® H -~ i~
' P
X X’ X

Code Output

Extracting and composing robust features with denoising autoencoders, Pascal Vincent etc, 2008 34
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Self-supervised Learning

* Image Example: Colorisation

Colorful Image Colorization. Zhang et al., ECCV 2016 >



Self-supervised Learning

* Image Examples

Autoencoders Denoising Autoencoders
i = ¥
a;%i);%;ﬁjﬂkég‘é = v ////:// w

- § . L i EOROO)-—= {00000 [©O000)
Hinton & Salakhutdinov. . ' '

Science 2006. Vincent et al. ICML 2008.
Co-Occurrence Egomotion

o

-t

-P*L‘--‘L >

Steam2 :

uonowob3

Agrawal et al. ICCV 2015 Jayaraman et al. ICCV 2015

Context

Pathak et al. CVPR 2016

Noroozi et al 2016

Split-brain auto-encoders

__________________________

Zhang et al. CVPR 2017
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Self-supervised Learning

* Video Example

* Videos contain
* Colour, Temporal info
* Possible proxy tasks
 Temporal order of the frames
e Optical flow: Motion of objects

37
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Self-supervised Learning

* Video Example: Shuffle and Learn

Given a start and an end, can this point lie in between?

Unsupervised Learning using Temporal Order Verification. Ishan Misra, C. Lawrence Zitnick and Martial Hebert. ECCV, 2(3)816.
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Self-supervised Learning

* Video Example: Shuffle and Learn

True False

Unsupervised Learning using Temporal Order Verification. Ishan Misra, C. Lawrence Zitnick and Martial Hebert. ECCV, 28916.
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Self-supervised Learning

* Video Example: Shuffle and Learn
Input Tuple

fc8

Correct/Incorrect
Tuple

c
Q
©
&
3]
®
O
S
o

classification

Cross Entropy Loss

Slide credit: Ishan Misra

Unsupervised Learning using Temporal Order Verification. Ishan Misra, C. Lawrence Zitnick and Martial Hebert. ECCV, 26016.
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Self-supervised Learning

* Video Example: Shuffle and Learn
Image Retrieval: Nearest Neighbors of Query Frame (FC5 outputs)

Shuffle & Learn

Query

ImageNet

Unsupervised Learning using Temporal Order Verification. Ishan Misra, C. Lawrence Zitnick and Martial Hebert. ECCV, 26116.
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Self-supervised Learning

* Video Example: Shuffle and Learn

Action Recognition: Self-supervised pre-train + Finetune
Input Tuple

Action Labels

I

Correct/Incorrect
Tuple

Dataset Initialization Mean Classification
Accuracy
UCF101 Random 38.6
Shuffle & Learn 50.2
ImageNet pre-trained 67.1

Unsupervised Learning using Temporal Order Verification. Ishan Misra, C. Lawrence Zitnick and Martial Hebert. ECCV, 26216.
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Self-supervised Learning

* Video Example: Odd-One-Out

Predictedoad  (xRz) Initialization Mean
i 3 | Classification
|l fc8 J Accuracy
fc7
i Fusion Layer } Random 386
6 | [ fe6 | [ fc6 ]
[conys | [conv5 ] Cconv5 | Shuffle and Learn 50.2
Coonv1 Coonv1 Cconvi Odd-One-Out 60.3
Video-clip Encoder Video-clip Encoder Video-clip Encoder
l“ T g R e ImageNet pre- 67.1
’r§§ NN BT e P P i N e

Correct order x Wrong order . Correct order

Self-Supervised Video Representation Learning With Odd-One-Out Networks. Basura Fernando, Hakan
Bilen, Efstratios Gavves, and Stephen Gould, ICCV 2017

43
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* Video Example: Learning the Arrow of Time

Forward or backward plays?

AA
/
E (/ﬁ ; Concat forwards
' — — or
O Gae  backwards
+Logistic ')
input motion
* Depending on the video, solving the task may require * Input: optical flow in two chunks
(a) low-level understanding (e.g. physics) * Final layer: global average pooling to allow class

(b) high-level reasoning (e.g. semantics) activation map (CAM)
(¢) familiarity with very subtle effects
(d) camera conventions

Learning and Using the Arrow of Time. Donglai Wei, Joseph Lim, Bill Freeman, Andrew Zisserman. CVPR 2018 .
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Self-supervised Learning

* Video Example: Temporal Coherence of Color

Colorize all frames of a grey scale version using a reference frame

Reference Frame

What color is that?

Tracking Emerges by Colorizing Videos
Vondrick, Shrivastava, Fathi, Guadarrama, Murphy, ECCV 2018

45
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Self-supervised Learning

* Video Example: Temporal Coherence of Color
Tracking Emerges: Only the first frame is given, colors indicate different instances

Reference Frame Input Frame

Reference Mask Predicted Mask
Tracking Emerges by Colorizing Videos
Vondrick, Shrivastava, Fathi, Guadarrama, Murphy, ECCV 2018

46



UN7
3 Vv

ez ) ¥

Tso9t PEKING UNIVERSITY

TEK N
lIIIIL
41|6"

Self-supervised Learning

* Video Example: Temporal Coherence of Color

Segment Tracking: Only the first frame is given, colors indicate different instances

Tracking Emerges by Colorizing Videos .
Vondrick, Shrivastava, Fathi, Guadarrama, Murphy, ECCV 2018
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Self-supervised Learning

* Video Example: Temporal Coherence of Color
Pose Tracking: Only the skeleton in the first frame is given

——
p—
—_——
——
——
——
———
——
—
—_——
——
—_——
——
==
1
.

Tracking Emerges by Colorizing Videos 48

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy, ECCV 2018
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Self-supervised Learning

* Video Example: Temporal Coherence of Color

Unsupervised Key-point Detection: Only paired images of the same object is given

-1 T +1 1,1
E [
= 3
Ly Yk
-1

. | D LR T Ot o s e P g
* Achieve retargeting . , . )
» Disentangling Style and Geometry © § L NS & W df N “} dr
* Invariant Localization ‘ . iyl et )
variant ocals < % DR &2 g %
(a) (b) (c)

(d)

Unsupervised Learning of Object Landmarks through Conditional Image Generation
Tomas Jakab, Ankush Gupta et al. NIPS, 2018.

49
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Self-supervised Learning

* Video + Sound Example

e Sound and frames are:
* Semantically consistent
e Synchronized
* Two types of proxy task:
* Predict audio-visual correspondence
* Predict audio-visual synchronization

50
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* Video + Sound Example: Audio-Visual Co-supervision

Train a network to predict if image and audio clip correspond

Sl Tl | AT
single frame _.. visual subnetwork drum — ‘ ‘ M
- P o s | =
Bl ([ LTETE -»H -
> Lt =| |Correspond? s 9 F ‘

yes/no

o

Contrastive -

by | "'_, 27l - -~ H loss based
| ((F =) |- | ondistance
15% - ""“‘ - “1J  between

vectors guitar !

Negative
audio subnetwork

51

Objects that Sound. Arandjelovi¢ and Zisserman, ICCV 2017 & ECCV 2018
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* Video + Sound Example: Audio-Visual Co-supervision
Corresponds: yes/no?
t
I:IEWIS ey ° Learn good visual features * Using learned features
| * Learn good audio features * Sound classification
Simoid * Learn aligned audio-visual embeddings* Query on image to retrieve audio
conv7 11 » Learn to localize objects that sound * Localizing objects with sound

14x14 per-location
c ce scores

all pairwise scalar products
14x14x1

'g convé 1x1 =
S| 14x14x128 E
] conv5 1x1 fcl 512x12 @
_S 14x14x128 128 _g
a poold 16x12 a
p 1x1x512 o
.2 | Image ConvNet Audio ConvNet |©
42 14x14x512 16x12x512 3
> I <
257x200x1

224x224x3
T

P

1 second 48kHz audio

52
Objects that Sound. Arandjelovié¢ and Zisserman (DeepMind, Ox), ICCV 2017 & ECCV 2018
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Self-supervised Learning

* Video + Sound Example: Audio-Visual Co-supervision
] ]

: Positive pair E Negative pair tg _ \-é _ "lil ‘ ’ i ' i I Tﬂ'
S EEEE
. applications ot — I - Mn[ (-

» Active speaker detection

* Audio-to-video synchronization
* Voice-over rejection

 Visual features for lip reading

Out of time: Automatic lip sync in the wild. Chung, Zisserman, 2016 v



G UNT DN »
S 7 =4
s 2 J’ »ﬁ
";: a t X A -
5ot PEKING UNIVERSITY

e Self-augmented Learning

54
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Self-augmented Learning

Data in input only
with known inverse mapping f’
(Learn the mapping f and output y)

0000

y=[f0),x=f)

Self-augmented Learning

55
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* Example: Unsupervised 3D shape generation Differentiable 3D to 2D Profector
(Known inverse mapping)
2D Discriminators
3D Shapes for different views

N2
=
& ¥ SO

0 —»

Generate ’ Multi-projection GAN

z— G

Estimate view
" for unlabeled

synthetic — ~

training data images
View prediction network
Synthesizing 3D Shapes from Unannotated Image Collections using Multi-projection Generative Adversarial Networks. 56

Xiao Li, Yue Dong, Pieter Peers, Xin Tong. CVPR, 2019



Summary

Unsupervised Learning
Semi-supervised Learning
Weakly-supervised Learning
Dual Learning
Self-supervised Learning
Self-augmented Learning
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Thanks
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