

Challenge: Others

Hao Dong

Peking University

Challenge: Others

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

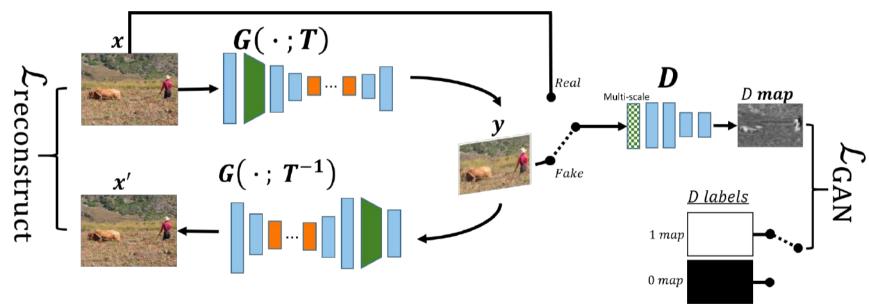
• InGAN: Capturing and Remapping the "DNA" of a Natural Image

Conditional generative model

Architecture

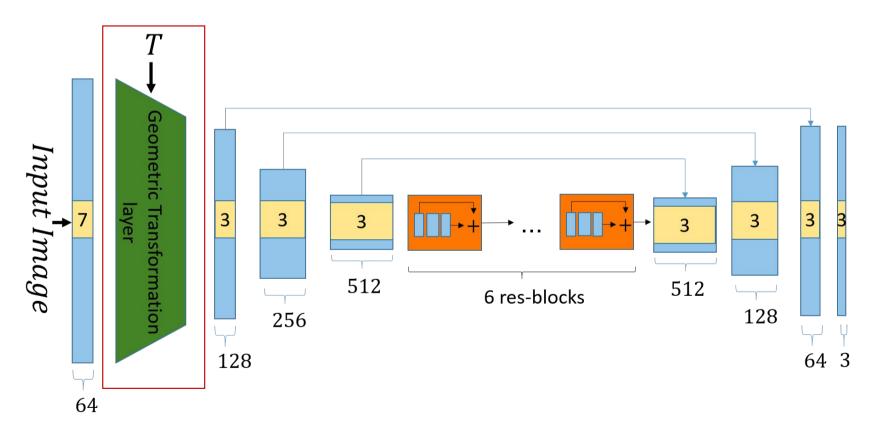
$$\mathcal{L}_{ exttt{InGAN}} = \mathcal{L}_{ exttt{GAN}} + \lambda \cdot \mathcal{L}_{ exttt{reconst}}$$

$$\mathcal{L}_{\text{GAN}}(G, D) = \mathbb{E}_{y \sim p_{\text{data}}(x)}[(D(x) - 1)^2] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[D(G(x))^2]$$

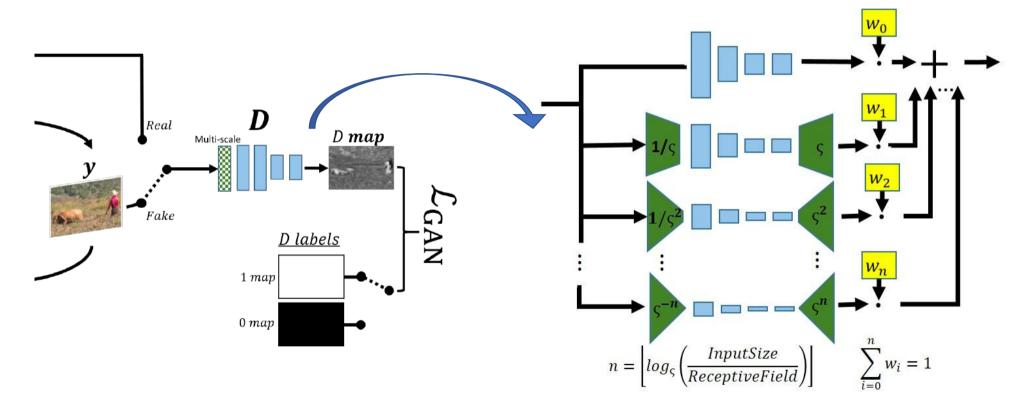


$$\mathcal{L}_{\text{reconst}} = \left\| G\left(G\left(x;T\right);T^{-1}\right) - x \right\|_{1}$$

Generator architecture

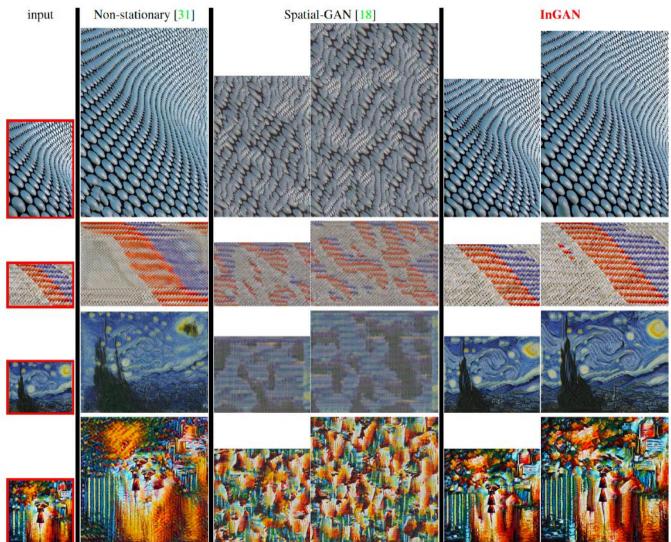


Adaptive Multi-Scale Patch Discriminator



Multiple Tasks:

Texture synthesis



Multiple Tasks:

 Natural image retargeting

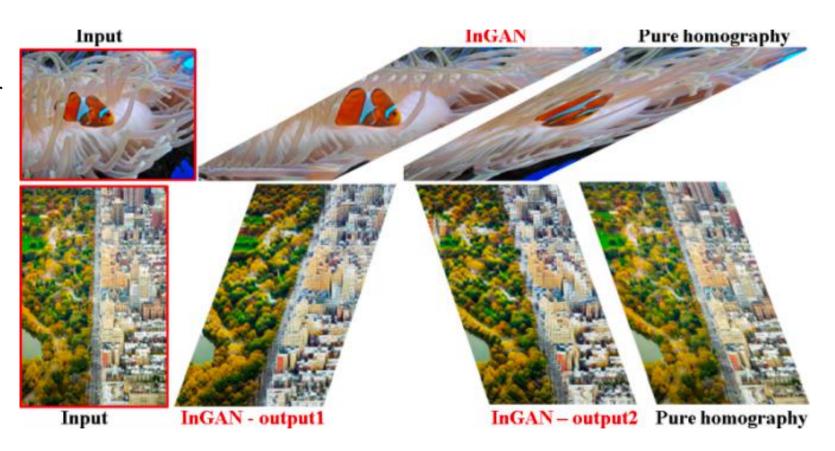
Seam-Carving

BiDir

InGAN

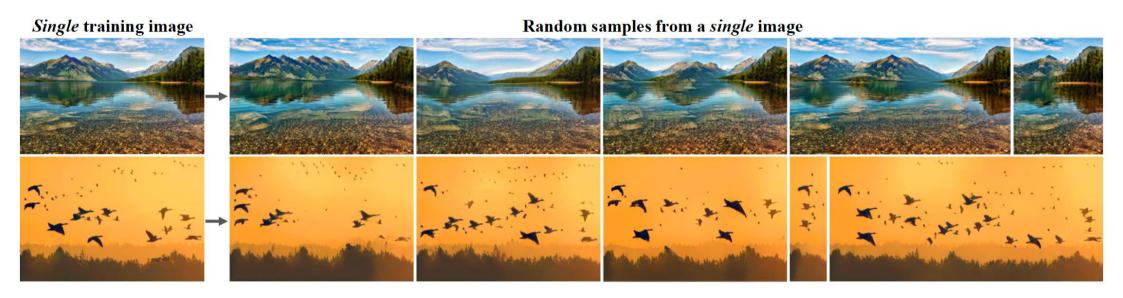
Multiple Tasks:

 Retargeting to Non-Rectangular Outputs



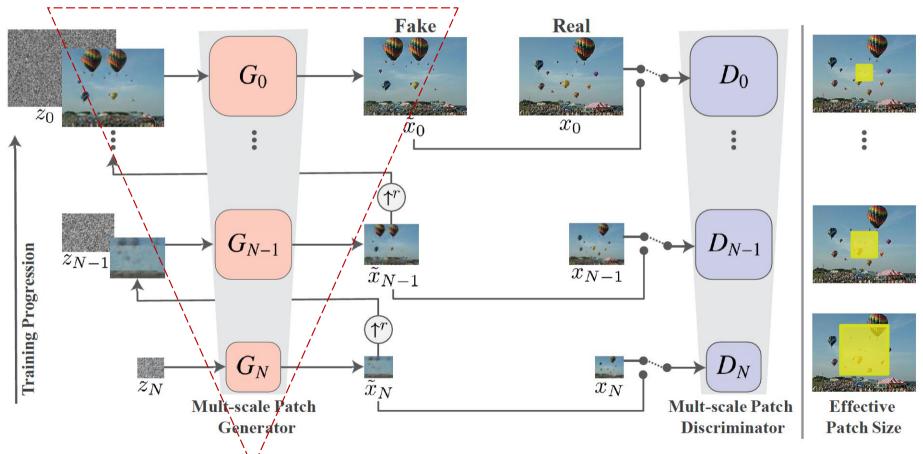
- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

• SinGAN: Learning a Generative Model from a Single Natural Image

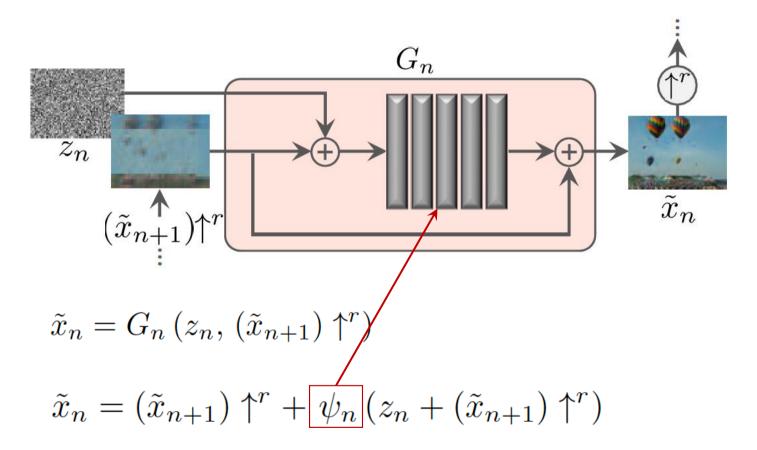


SinGAN: Unconditional VS. InGAN: Conditional

SinGAN's multi-scale pipeline: A pyramid of GANs



Single scale generation



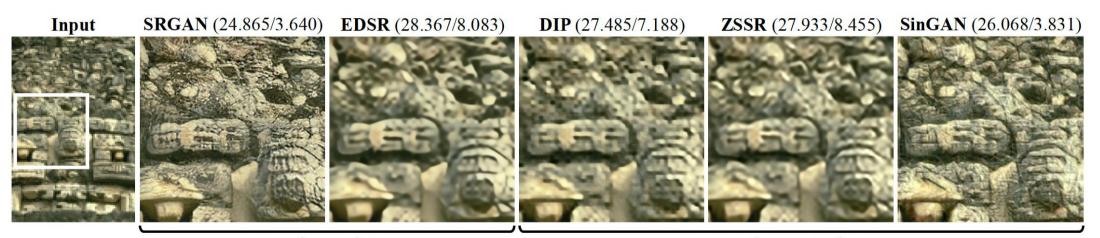
Training

Sequentially train from the coarsest scale to the finest one

Once each GAN is trained, it is kept fixed



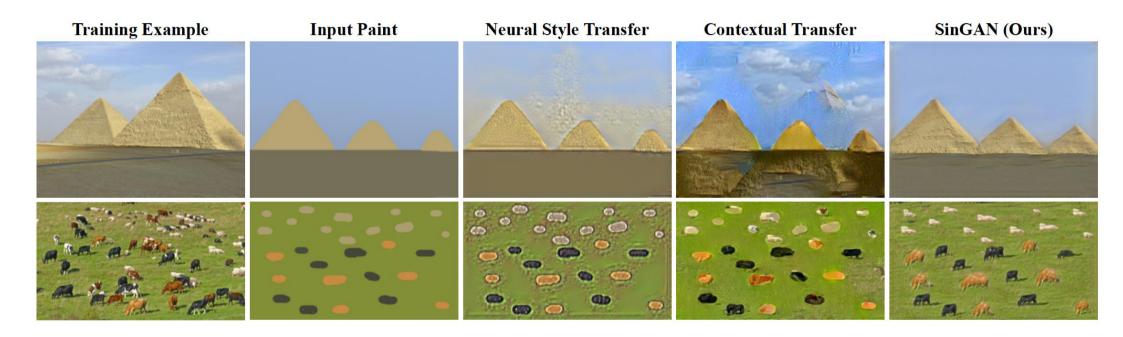
• Applications: Super Resolution



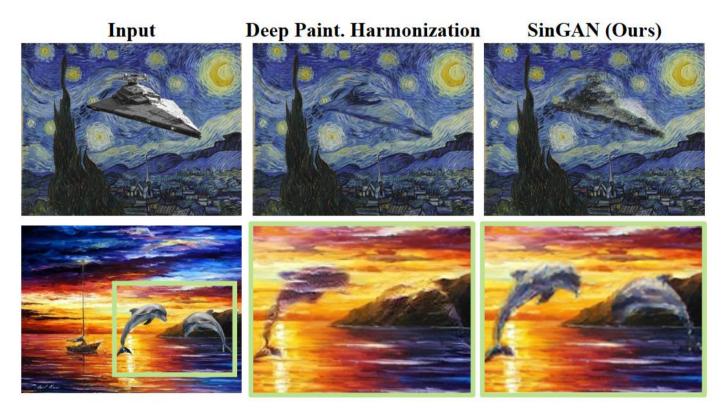
trained on a dataset

trained on a single image

Applications: Paint-to-Image



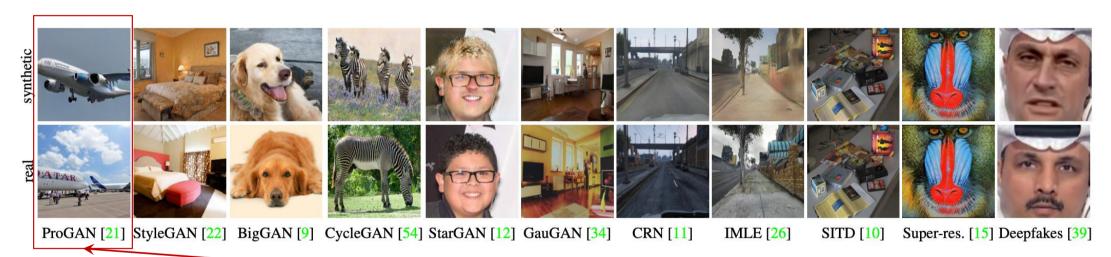
Applications: Harmonization



- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

CNN-generated images are surprisingly easy to spot... for now

Are CNN-generated images hard to distinguish from real images?



A classifier trained to detect images **generated by only one CNN** (ProGAN, far left) **can detect those generated by many other models** (remaining columns)

CNN-generated images are surprisingly easy to spot... for now

ForenSynth: A dataset of CNN-based generation models

Family	Method	Image Source	# Images		
Unconditional GAN	ProGAN [21]	LSUN	8.0k		
	StyleGAN [22]	LSUN	12.0k		
	BigGAN [9]	ImageNet	4.0k		
Conditional GAN	CycleGAN [54]	Style/object transfer	2.6k		
	StarGAN [12]	CelebA	4.0k		
	GauGAN [34]	COCO	10.0k		
Perceptual loss	CRN [11]	GTA	12.8k		
	IMLE [26]	GTA	12.8k		
Low-level vision	SITD [10]	Raw camera	360		
	SAN [15]	Standard SR benchmark	440		
Deepfake	FaceForensics++ [39]	Videos of faces	5.4k		

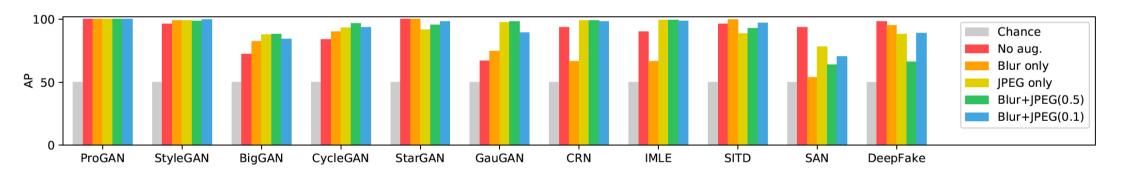
• CNN-generated images are surprisingly easy to spot... for now

Effect of data augmentation

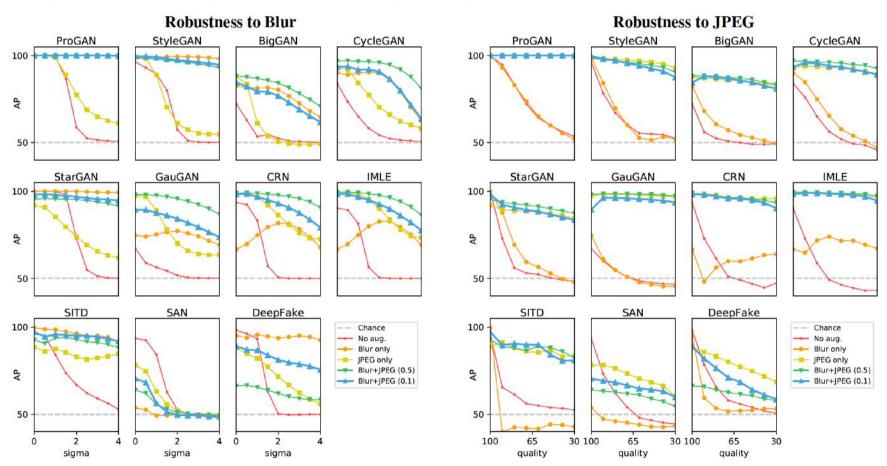
Family	Name	Training settings			Individual test generators											Total		
		Train	Input	No. Class	Aug	Augments	Pro- GAN	Style- GAN	Big- GAN	Cycle- GAN	Star- GAN	Gau- GAN	CRN	IMLE	SITD	SAN	Deep- Fake	mAP
					Blur	JPEG												max
Zhang et al. [50]	Cyc-Im	CycleGAN	RGB	_			84.3	65.7	55.1	100.	99.2	79.9	74.5	90.6	67.8	82.9	53.2	77.6
	Cyc-Spec	CycleGAN	Spec	_			51.4	52.7	79.6	100.	100.	70.8	64.7	71.3	92.2	78.5	44.5	73.2
	Auto-Im	AutoGAN	RGB				73.8	60.1	46.1	99.9	100.	49.0	82.5	71.0	80.1	86.7	80.8	75.5
	Auto-Spec	AutoGAN	Spec	_			75.6	68.6	84.9	100.	100.	61.0	80.8	75.3	89.9	66.1	39.0	76.5
Ours	2-class	ProGAN	RGB	2	✓	✓	98.8	78.3	66.4	88.7	87.3	87.4	94.0	97.3	85.2	52.9	58.1	81.3
	4-class	ProGAN	RGB	4	\checkmark	\checkmark	99.8	87.0	74.0	93.2	92.3	94.1	95.8	97.5	87.8	58.5	59.6	85.4
	8-class	ProGAN	RGB	8	\checkmark	\checkmark	99.9	94.2	78.9	94.3	91.9	95.4	98.9	99.4	91.2	58.6	63.8	87.9
	16-class	ProGAN	RGB	16	\checkmark	\checkmark	100.	98.2	87.7	96.4	95.5	98.1	99.0	99.7	95.3	63.1	71.9	91.4
	No aug	ProGAN	RGB	20			100.	96.3	72.2	84.0	100.	67.0	93.5	90.3	96.2	93.6	98.2	90.1
	Blur only	ProGAN	RGB	20	\checkmark		100.	99.0	82.5	90.1	100.	74.7	66.6	66.7	99.6	53.7	95.1	84.4
	JPEG only	ProGAN	RGB	20		\checkmark	100.	99.0	87.8	93.2	91.8	97.5	99.0	99.5	88.7	78.1	88.1	93.0
	Blur+JPEG (0.5)	ProGAN	RGB	20	\checkmark	\checkmark	100.	98.5	88.2	96.8	95.4	98.1	98.9	99.5	92.7	63.9	66.3	90.8
	Blur+JPEG (0.1)	ProGAN	RGB	20	†	†	100.	99.6	84.5	93.5	98.2	89.5	98.2	98.4	97.2	70.5	89.0	92.6

• CNN-generated images are surprisingly easy to spot... for now

Effect of data augmentation

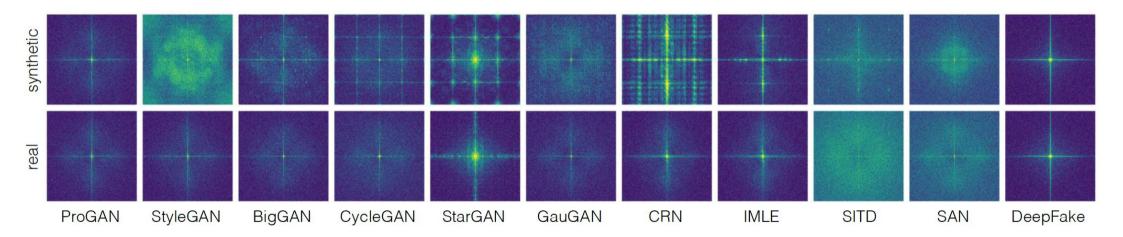


CNN-generated images are surprisingly easy to spot... for now



• CNN-generated images are surprisingly easy to spot... for now

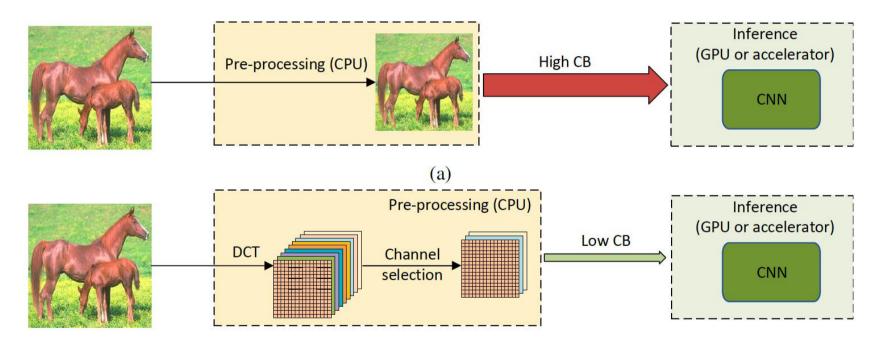
Frequency analysis on each dataset



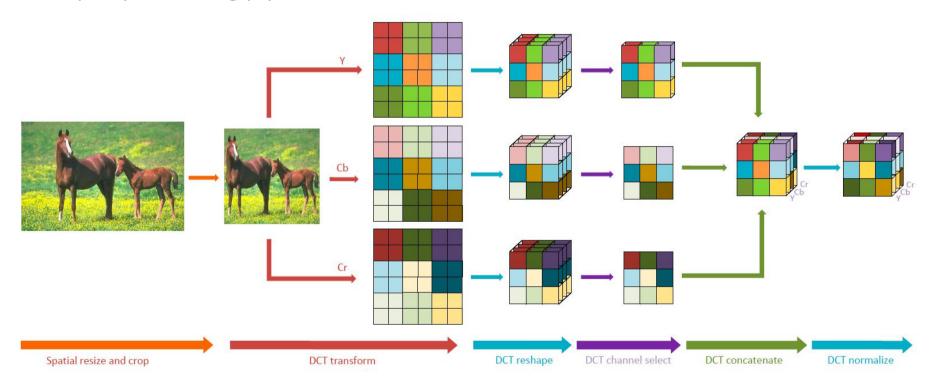
- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

• Learning in the Frequency Domain

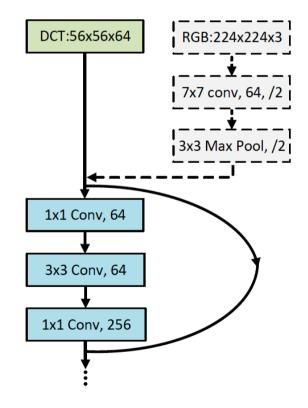
Why in the frequency domain?



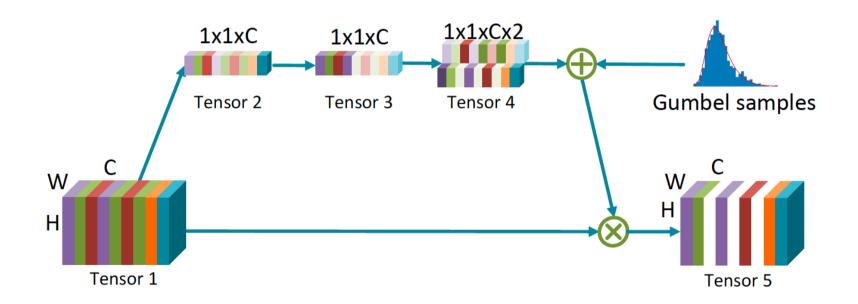
Learning in the Frequency Domain
 Data pre-processing pipeline



Learning in the Frequency Domain
 How to convert into the frequency domain?

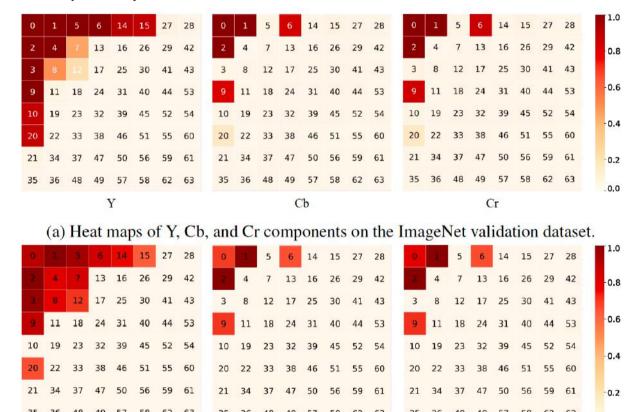


Learning in the Frequency Domain
 Channel Selection



Y

Learning in the Frequency Domain

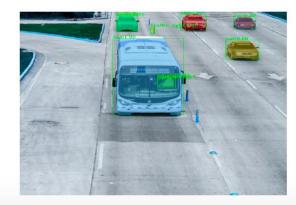


(b) Heat maps of Y, Cb, and Cr components on the COCO validation dataset

Cr

Cb

Learning in the Frequency Domain



Examples of instance segmentation results on the COCO dataset

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

What it learns

GAN Dissection

How to visualise GANs?

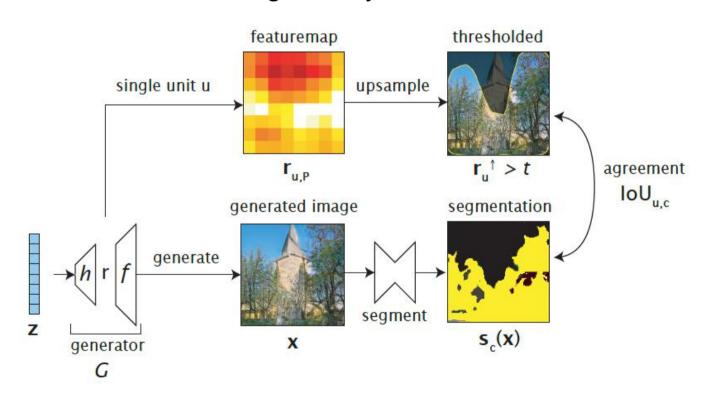
How to understand GANs?

Bau, David, et al. "Gan dissection: Visualizing and understanding generative adversarial networks." arXiv preprint arXiv:1811.10597 (2018).

What it learns

GAN Dissection

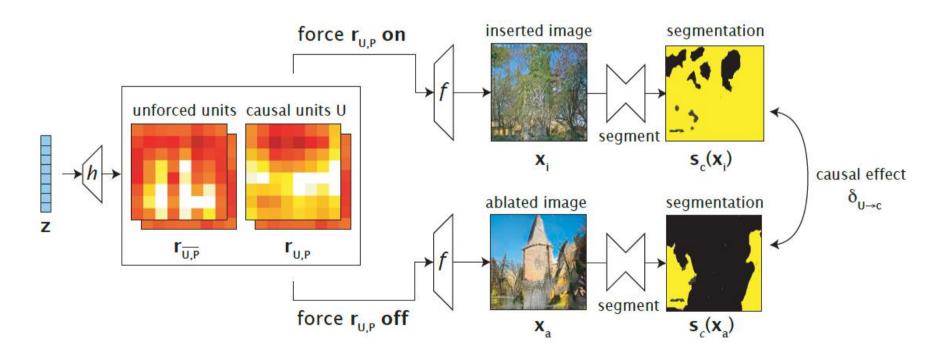
Analytical Framework: Characterising Units by **Dissection**



What it learns

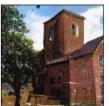
GAN Dissection

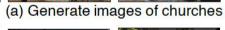
Analytical Framework: Measuring Causal Relationships Using Intervention

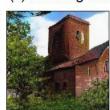


GAN Dissection

Finding concepts





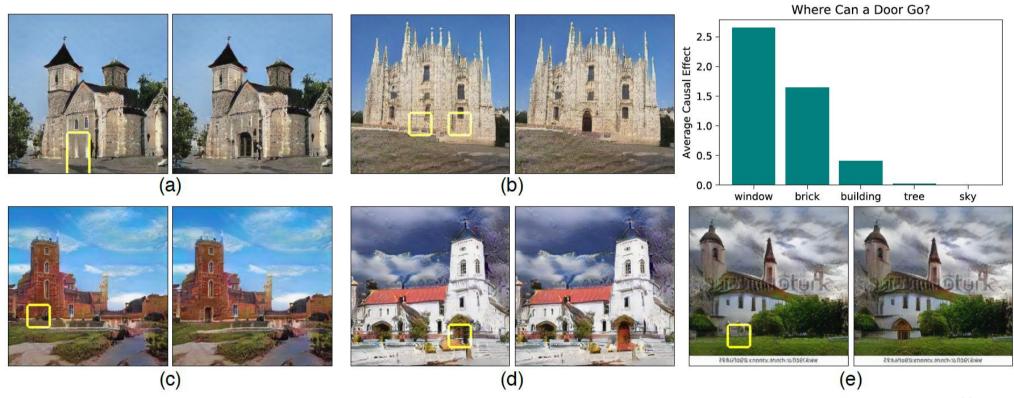




(b) Identify GAN units that match trees

(d) Activating units adds trees

GAN Dissection
 Effect of Intervention

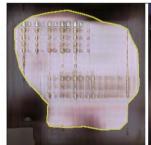


GAN Dissection

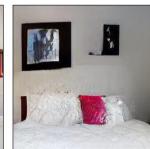
Results



(b) Bedroom images with artifacts



(a) Example artifact-causing units



(c) Ablating "artifact" units improves results

• GAN Dissection

https://gandissect.csail.mit.edu

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

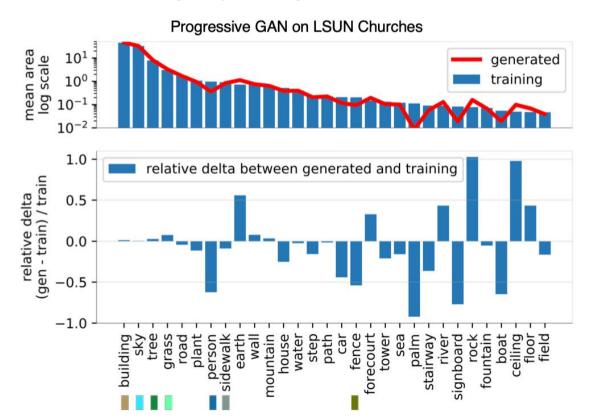
Mode Collapse

How do we know what a GAN cannot generate?

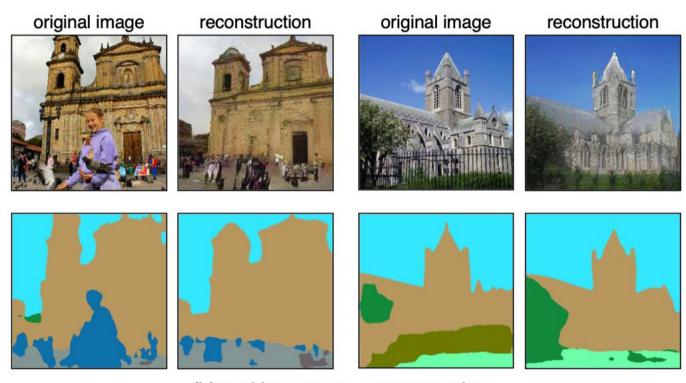
How to visualise the problem of mode collapse?

Bau, David, et al. "Seeing what a GAN cannot generate." Proceedings of the IEEE International Conference on Computer Vision. 2019.

Seeing what a GAN cannot generate
 Generated vs. Training object segmentation statistics



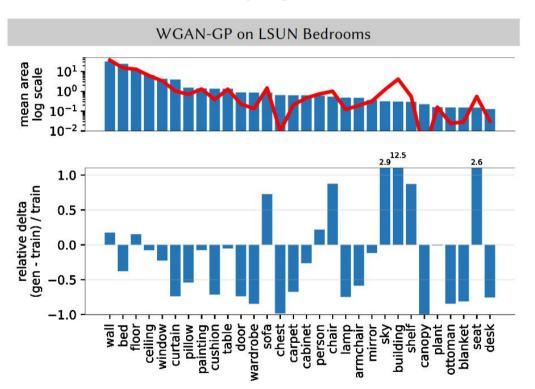
Seeing what a GAN cannot generate
 Generated vs. Training object segmentation statistics

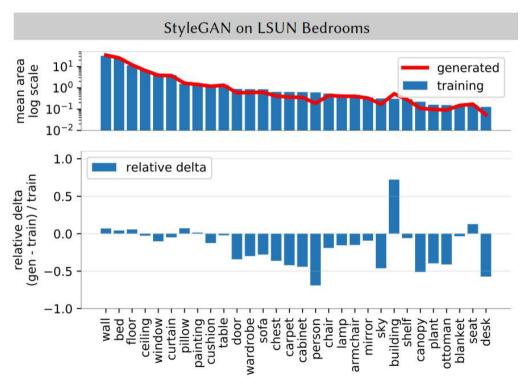


(b) real images vs. reconstructions

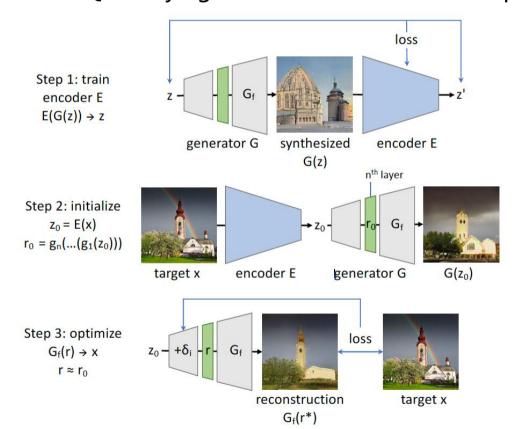
Seeing what a GAN cannot generate

Method: Quantifying distribution-level mode collapse





Seeing what a GAN cannot generate
 Method: Quantifying instance-level mode collapse



$$G = G_f(g_n(\cdots((g_1(\mathbf{z})))))$$

$$\mathcal{L}_{L} \equiv \mathbb{E}_{\mathbf{z}}[||\mathbf{r}_{i-1} - e(g_{i}(\mathbf{r}_{i-1}))||_{1}]$$

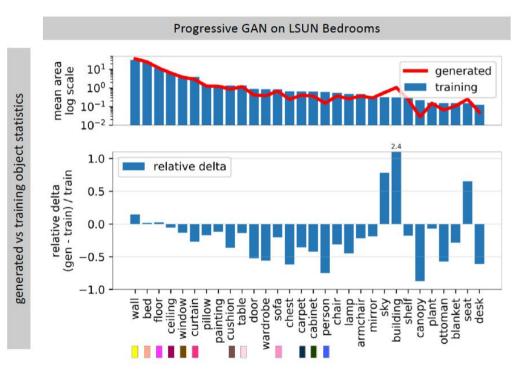
$$\mathcal{L}_{R} \equiv \mathbb{E}_{\mathbf{z}}[||\mathbf{r}_{i} - g_{i}(e(\mathbf{r}_{i}))||_{1}]$$

$$e_{i} = \underset{e}{\operatorname{arg \, min}} \quad \mathcal{L}_{L} + \lambda_{R}\mathcal{L}_{R},$$

$$E^{*} = e_{1}(e_{2}(\cdots(e_{n}(e_{f}(\mathbf{x})))))$$

$$\mathbf{x'} = G_f(\mathbf{r}^*),$$
 where $\mathbf{r}^* = \operatorname*{arg\,min}_{\mathbf{r}} \ell(G_f(\mathbf{r}), \mathbf{x})$

 Seeing what a GAN cannot generate Results



 Seeing what a GAN cannot generate Results

Seeing what a GAN cannot generate

Summary

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

Thanks