Challenge:
High-dimensional Data Generation

Hao Dong

Peking University
Challenge: High-dimensional data generation

Past
64x64

Now
1K, 2K

Next
Retina Screen

We use images for demonstration

Challenge: High-dimensional data generation

- Challenges:
 - Formulation
 - For CG-based Methods
 - For Deep Methods
- Approaches:
 - Progressive-GAN
 - Style-GAN
 - SAGAN
 - Big-GAN
 - VQ-VAE VQ-VAE-2 and Limitation
- Discussion:
 - Ideal Generative Models
Challenge: High-dimensional data generation

• Challenges:
 • Formulation
 • For CG-based Methods
 • For Deep Methods
 • Approaches:
 • Progressive-GAN
 • Style-GAN
 • SAGAN
 • Big-GAN
 • VQ-VAE VQ-VAE-2 and Limitation
• Discussion:
 • Ideal Generative Models
Formulation

Features
(e.g., the prior distribution, predefined features)

Large Scale (e.g., Resolution)
(e.g., image, video, ...)

\[p(x) = p(x|z)p(z) \]

(Prior) Normal Distribution
\[z = 100 \text{ values} \]
Formulation

Features
(e.g., the prior distribution, predefined features)

\[p(x|z, c) \]

Large Scale
(e.g., image, video, ...)

- Shape deformation! (Locally & Globally)

Predefined features

monarch butterfly goldfinch daisy
Challenge: High-dimensional data generation

- Challenges:
 - Formulation
 - For CG-based Methods
 - For Deep Methods
- Approaches:
 - Progressive-GAN
 - Style-GAN
 - SAGAN
 - Big-GAN
 - VQ-VAE VQ-VAE-2 and Limitation
- Discussion:
 - Ideal Generative Models
CG-based Methods

• Fully CG-based
• Hybrids

Pros:
• Reasonable Structure
• As “structure” is relatively more well-defined.

Cons:
• Distorted Details
• We cannot well-define “What is a human face” or “What is real wall texture”.

GTA 5
CG-based Methods

- Fully CG-based
- Hybrid
 - Computer Graphics + GAN

CG-based Methods

- Fully CG-based
- Hybrids
 - Computer Graphics + GAN

CG-based Methods

- Fully CG-based
- Hybrids
- Limitation
 - Need prior knowledge
 - Intensive Engineering...
 - Limited Generalisation
 - Artificially designed generation rule can only capture limited latent structure of domain
 - Improvement need more prior ...
 - Anyway, automatically learning prior knowledge is necessary.
Challenge: High-dimensional data generation

- Challenges:
 - Formulation
 - For CG-based Methods
 - For Deep Methods
- Approaches:
 - Progressive-GAN
 - Style-GAN
 - SAGAN
 - Big-GAN
 - VQ-VAE VQ-VAE-2 and Limitation
- Discussion:
 - Ideal Generative Models
Deep Methods

- As resolution grows, high-level information contained in same image grows much slower than low-level features

- As shown on the right From 50x50 -> 100x100
 - “High-level” information grows much slower
 - “low-level” information keeps growing
 - Intensively modeling of details

- Note that if we want to keep “R”’s structure, then we have to keep all pixels’ relative position fixed and average distance between each pixel-pair is proportional to resolution.
 - Long-range dependency problem
Challenge: High-dimensional data generation

- Challenges:
 - Formulation
 - For CG-based Methods
 - For Deep Methods

- Approaches:
 - Progressive-GAN
 - Style-GAN
 - SAGAN
 - Big-GAN
 - VQ-VAE VQ-VAE-2 and Limitation

- Discussion:
 - Ideal Generative Models
Progressive GAN

• Recap: DCGAN

• Difficult to scale:
 • Unstable training
 • Computer memory constraints
 • High resolution images make the discriminator easier to discriminate the fake and real images, amplifying the gradient problem.

64x64 work!

1024x1024 fail......
Progressive GAN

- From Coarse to Fine: 4x4 → 8x8 → 16x16 → 32x32 → 1024x1024

Ualitig, Q., Tability, S., Ariation, V., & Karras, T. 2018 ICLR. Progressive Growing of GANs for Improved Quality, Stability, and Variation
Progressive GAN

• From Coarse to Fine: 4x4 \rightarrow 8x8 \rightarrow 16x16 \rightarrow 32x32 \rightarrow 1024x1024

Uality, Q., Tability, S., Ariation, V., & Karras, T. 2018 ICLR. Progressive Growing of GANs for Improved Quality, Stability, and Variation
Progressive GAN

- From Coarse to Fine with Condition
Progressive GAN \rightarrow StackGAN

- From Coarse to Fine: Text-to-Image Synthesis

<table>
<thead>
<tr>
<th>Text description</th>
<th>Stage-I images</th>
<th>Stage-II images</th>
</tr>
</thead>
<tbody>
<tr>
<td>This bird is blue with white and has a very short beak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This bird has wings that are brown and has a yellow belly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A white bird with a black crown and yellow beak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This bird is white, black, and brown in color, with a brown beak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The bird has small beak, with reddish brown crown and gray belly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is a small, black bird with a white breast and white on the wingbars.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This bird is white black and yellow in color, with a short black beak</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Progressive GAN → StackGAN

• From Coarse to Fine: Text-to-Image Synthesis

Progressive GAN

• Question: Can Computer Graphic Generates This?

Uality, Q., Tability, S., Arition, V., & Karras, T. 2018 ICLR. Progressive Growing of GANs for Improved Quality, Stability, and Variation
Challenge: High-dimensional data generation

- Challenges:
 - Formulation
 - For CG-based Methods
 - For Deep Methods
- Approaches:
 - Progressive-GAN
 - Style-GAN
 - SAGAN
 - Big-GAN
 - VQ-VAE VQ-VAE-2 and Limitation
- Discussion:
 - Ideal Generative Models
StyleGAN

- Insert Feature as Style Transfer

Adaptive Normalization:

\[
\text{AdaIN}(x_i, y) = y_{s,i} \frac{x_i - \mu(x_i)}{\sigma(x_i)} + y_{b,i}
\]

where each feature map \(x_i\) is normalized separately, and then scaled and biased using the corresponding scalar components from style \(y\).

A Style-Based Generator Architecture for Generative Adversarial Networks. Ero Karras, Samuli Laine, Timo Aila. arXiv 2018
StyleGAN

- Hierarchical Latent Code

A Style-Based Generator Architecture for Generative Adversarial Networks. Ero Karras, Samuli Laine, Timo Aila. arXiv 2018
StyleGAN

- Hierarchical Noise

(a) Noise is applied to all layers.

(b) No noise. look “smooth”

(c) Noise in fine layers only \((64^2 - 1024^2)\). fine details

(b) Noise in coarse layers only \((4^2 - 32^2)\). coarse details

A Style-Based Generator Architecture for Generative Adversarial Networks. Ero Karras, Samuli Laine, Timo Aila. arXiv 2018
Challenge: High-dimensional data generation

• Challenges:
 • Formulation
 • For CG-based Methods
 • For Deep Methods

• Approaches:
 • Progressive-GAN
 • Style-GAN
 • SAGAN
 • Big-GAN
 • VQ-VAE VQ-VAE-2 and Limitation

• Discussion:
 • Ideal Generative Models
SAGAN

- Recap: Shape Deformation When Directly Scaling Up DCGAN
 - And recall that deep model’s challenges lie on
 - Intensively modeling details
 - Long range dependency

- CNN is a strong inductive bias to model natural details, but fails when modeling long range dependency.
SAGAN

- Non-local layer vs Local layer
 - CNN is “local layer”, a neuron only observes part elements of the previous layer.

 ![Diagram of CNN and FC layers]

 - CNN: local layer FC: non-local layer

 - Which limits the network’s ability to capture global dependencies.
SAGAN

- SAGAN: Introduce attention layer into DCGAN backbone
 - Attention: have become an integral part of models that must capture global dependencies
 - Illustration of attention:

\[
\text{Attention Value} = \sum_{i=1}^{4} \text{value}_i \cdot \text{coefficient}_i
\]

\[
\text{coefficient}_i = \frac{e^{-\text{Key}_i \cdot \text{Query}}}{\sum_{j=1}^{4} e^{-\text{Key}_j \cdot \text{Query}}}
\]

Convex combination of value w.r.t. coefficients

Correlation coefficient
SAGAN

- SAGAN: Introduce attention layer into DCGAN backbone
SAGAN

- SAGAN: Introduce attention layer into DCGAN backbone
Challenge: High-dimensional data generation

• Challenges:
 • Formulation
 • For CG-based Methods
 • For Deep Methods

• Approaches:
 • Progressive-GAN
 • Style-GAN
 • SAGAN
 • Big-GAN
 • VQ-VAE VQ-VAE-2 and Limitation

• Discussion:
 • Ideal Generative Models
Big-GAN

- Big-GAN: Some novel tricks to scale up SAGAN + SAGAN backbone
 - 1. SAGAN -> conditional-SAGAN + skip-z
 - 2. 64x channel -> 96x channel
 - 3. 256x batch size -> 2048x batch size
- Ablation:
 - After applying 1:
 - Performance + 4%
 - Training speed + 18%
 - After applying 2:
 - IS + 21%
 - After applying 3:
 - IS + 50%
Big-GAN

- Big-GAN: Some novel tricks to scale up SAGAN + SAGAN backbone
 - 4. truncation trick
 - Using different latent distribution for sampling than used in training
 - 5. orthogonal regularization
 - Enforce Generator to be more amenable to truncation
 - Orthogonal regularization can make G smoother

\[R_\beta(W) = \beta \| W^\top W \odot (1 - I) \|_F^2, \]
Big-GAN

- Big-GAN: Some novel tricks to scale up SAGAN + SAGAN backbone
- Samples generated by BigGAN at 256x resolution on ImageNet
Challenge: High-dimensional data generation

• Challenges:
 • Formulation
 • For CG-based Methods
 • For Deep Methods

• Approaches:
 • Progressive-GAN
 • Style-GAN
 • SAGAN
 • Big-GAN
 • VQ-VAE VQ-VAE-2 and Limitation

• Discussion:
 • Ideal Generative Models
VQ-VAE

- **Straight-thought Estimator**
VQ-VAE

• Loss

\[
L = \log p(x|z_q(x)) + \|\text{sg}[z_e(x)] - e\|_2^2 + \beta \|z_e(x) - \text{sg}[e]\|_2^2,
\]

Image reconstruction loss Make the quantized vector as close as the original vector

VQ-VAE

• Results

Images contain a lot of redundant information as most of the pixels are correlated and noisy, therefore learning models at the pixel level could be wasteful.

In this experiment we show that we can model $x = 128 \times 128 \times 3$ images by compressing them to a $z = 32 \times 32 \times 1$ discrete space (with $K=512$) via a purely deconvolutional $p(x|z)$. So a reduction of $\frac{128 \times 128 \times 3 \times 8}{32 \times 32 \times 9} \approx 42.6$ in bits. We model images by learning a powerful prior (PixelCNN) over z. This allows to not only greatly speed up training and sampling, but also to use the PixelCNNs capacity to capture the global structure instead of the low-level statistics of images.
VQ-VAE

- Results – Random Sampling

Samples (128x128) from a VQ-VAE with a PixelCNN prior trained on ImageNet images. From left to right: kit fox, gray whale, brown bear, admiral (butterfly), coral reef, alp, microwave, pickup.

VQ-VAE

• Results – More Data Modalities

Left: original waveform, middle: reconstructed with same speaker-id, right: reconstructed with different speaker-id. The contents of the three waveforms are the same.

First 6 frames are provided to the model, following frames are generated conditioned on an action. Top: repeated action "move forward", bottom: repeated action "move right".

VQ-VAE-2

- VQVAE-2: Scale single-level VQ-VAE to hierarchical VQ-VAE
- Intuition: Different level’s features encode different level’s information

VQ-VAE-2

- An intuitive interpretation of different level’s information

VQ-VAE-2

VQ-VAE-2 Limitation

• The latent representation is not a prior distribution, an additional deep model is required to model the latent distribution for sampling, it is not a “real encoding”

• For VQ-VAE-2, the hierarchical representations are not independent, we cannot change the hierarchical feature individually.

• For both VQ-VAE and VQ-VAE-2, the spatial representations (the features within a same latent map) are not independent, we cannot change the spatial feature individually.

Challenge: High-dimensional data generation

- Challenges:
 - Formulation
 - For CG-based Methods
 - For Deep Methods
- Approaches:
 - Progressive-GAN
 - Style-GAN
 - SAGAN
 - Big-GAN
 - VQ-VAE VQ-VAE-2 and Limitation
- Discussion:
 - Ideal Generative Models
Discussion: Ideal Model

• High-dimensional data generation
• Data encoding, implicit inverse x→z

• More
 • Interpolation in latent space
 • Multi-modality
 • Mode collapse
 • Fast training
 • Disentanglement
 • Hierarchical representation with independent property
 • Spatial representation with independent property

Next Lecture
Thanks