

1

Energy-based Models -- Hopfield Network

Hao Dong

Peking University

Energy-based Models -- Hopfield Network

Hao Dong

Peking University

Contents

- Discrete Hopfield Neural Networks
 - Introduction
 - How to use
 - How to train
 - Thinking
- Continuous Hopfield Neural Networks

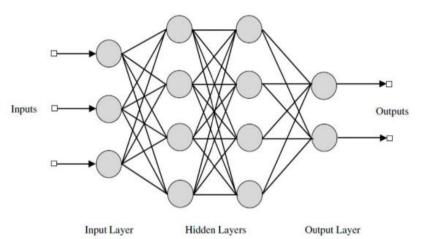
• Discrete Hopfield Neural Networks

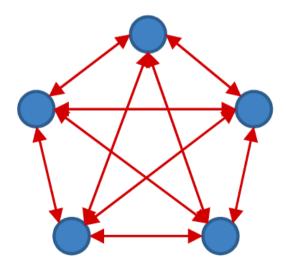
- Introduction
- How to use
- How to train
- Thinking
- Continuous Hopfield Neural Networks

• Before

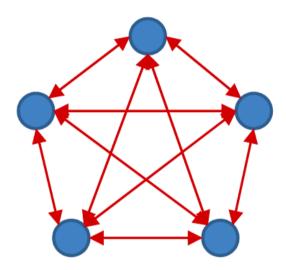
All feed forward structures

• What about ...





Consider this network



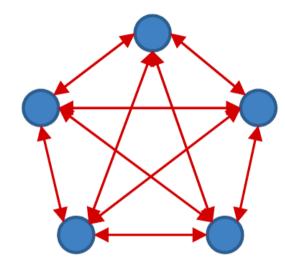
$$f(x) = \begin{cases} +1 & \text{if } x \ge 0\\ -1 & \text{if } x < 0 \end{cases}$$

$$y_i = f(\sum_{j \neq i} w_{ji} y_j + b_i)$$

- The output of each neuron is +1/-1
- Every neuron *receives* input from every other neuron
- Every neuron *outputs* signals to every other neuron
- The weight is symmetric: $w_{ij} = w_{ji}$ assume $w_{ii} = 0$
- The number of weights = Nx(N-1)/2

PEKING UNIVERSITY

Hopfield Net



$$f(x) = \begin{cases} +1 & \text{if } x \ge 0\\ -1 & \text{if } x < 0 \end{cases}$$

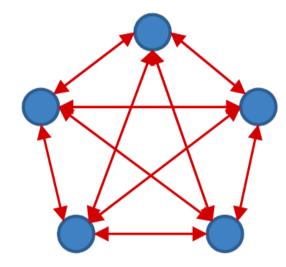
$$y_i = f(\sum_{j \neq i} w_{ji} y_j + b_i)$$

- At each time, each neuron receives a "field": $\sum_{j \neq i} w_{ji} y_j + b_i$
 - If the sign of the field matches its own sign, nothing happens;
 - If the sign of the field opposes its own sign, it "flips" to match the sign of the field.

$$y_i \to -y_i$$
, if $y_i \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) < 0$

PEKING UNIVERSITY

Hopfield Net

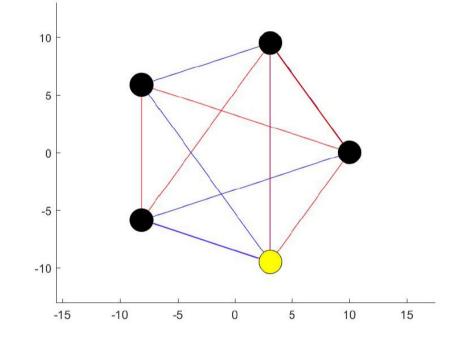


$$f(x) = \begin{cases} +1 & \text{if } x \ge 0\\ -1 & \text{if } x < 0 \end{cases}$$

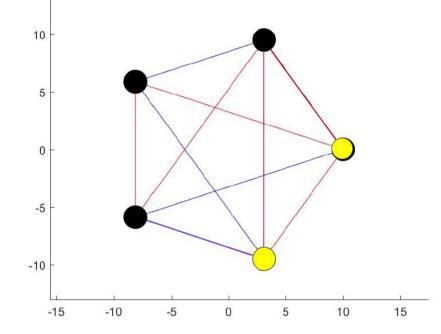
$$y_i = f(\sum_{j \neq i} w_{ji} y_j + b_i)$$

- If the sign of the field opposes its own sign, it "flips" to match the sign of the field.
- "Flips" of a neuron may cause other neurons to "flip"!

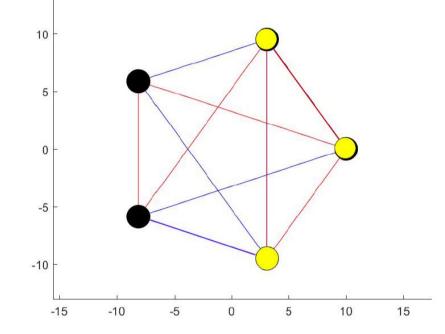
$$y_i \to -y_i$$
, if $y_i \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) < 0$



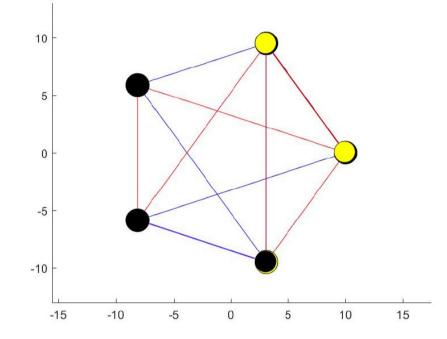
- Red edges are +1, blue edges are -1
- Yellow nodes are -1, black nodes are +1



- Red edges are +1, blue edges are -1
- Yellow nodes are -1, black nodes are +1



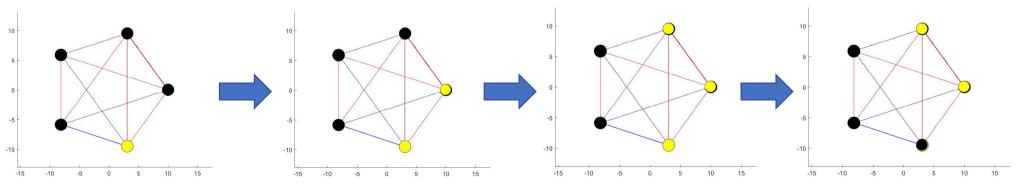
- Red edges are +1, blue edges are -1
- Yellow nodes are -1, black nodes are +1



- Red edges are +1, blue edges are -1
- Yellow nodes are -1, black nodes are +1

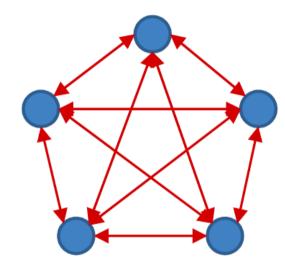
Hopfield Net

- If the sign of the field opposes its own sign, it "flips" to match the field
 - Which will change the field at other nodes
 - Which may then flip
 - Which may cause other neurons to flip
 - And so on...
- Will this continue forever?



PEKING UNIVERSITY

Hopfield Net

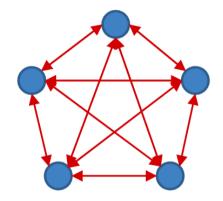


$$f(x) = \begin{cases} +1 & \text{if } x \ge 0\\ -1 & \text{if } x < 0 \end{cases}$$
$$y_i = f(\sum_{j \ne i} w_{ji} y_j + b_i)$$

- Let y_i^0 be the output of the i-th neuron before it responds to the current field
- Let y_i^{1} be the output of the i-th neuron before it responds to the current field

$$y_i \to -y_i$$
, if $y_i \left(\sum_{j \neq i} w_{ji} y_j + b_i \right) < 0$

Hopfield Net



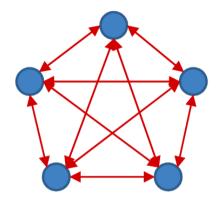
$$f(x) = \begin{cases} +1 \ if \ x \ge 0 \\ -1 \ if \ x < 0 \end{cases} \qquad y_i = f(\sum_{j \ne i} w_{ji} \ y_j + b_i)$$

• If
$$y_i^0 = f(\sum_{j \neq i} w_{ji} y_j + b_i)$$
, then $y_i^1 = y_i^0$

• No "flip" happens

$$y_i^1\left(\sum_{j\neq i} w_{ji} y_j + b_i\right) - y_i^0\left(\sum_{j\neq i} w_{ji} y_j + b_i\right) = 0$$

Hopfield Net



• If
$$y_i^0 \neq f(\sum_{j \neq i} w_{ji} y_j + b_i)$$
, then $y_i^1 = -y_i^0$

• "Flip" happens

$$y_i^1 \left(\sum_{j \neq i} w_{ji} \, y_j + b_i \right) - y_i^0 \left(\sum_{j \neq i} w_{ji} \, y_j + b_i \right) = 2y_i^1 \left(\sum_{j \neq i} w_{ji} \, y_j + b_i \right) > 0$$

• Every "flip" is guaranteed to locally increase

$$y_i^1(\sum_{j \neq i} w_{ji} y_j + b_i) > y_i^0(\sum_{j \neq i} w_{ji} y_j + b_i)$$

Globally

• Consider the following sum across all nodes:

•
$$E(y_1, y_2, ..., y_N) = -\sum_i y_i (\sum_{j \neq i} w_{ji} y_j + b_i)$$

= $-\sum_{i,j \neq i} w_{ij} y_i y_j - \sum_i b_i y_i$

- Assume $w_{ii} = 0$
- For a neuron k that "flips":

•
$$\Delta E(y_k) = E(y_1, \dots, y_k^1, \dots, y_N) - E(y_1, \dots, y_k^0, \dots, y_N)$$

= $-(y_k^1 - y_k^0)(\sum_{j \neq k} w_{jk} y_j + b_k)$

- Always <0!
- Every "flip" results in a decrease in E

Globally

• Consider the following sum across all nodes:

•
$$E(y_1, y_2, ..., y_N) = -\sum_{i,j \neq i} w_{ij} y_i y_j - \sum_i b_i y_i$$

• E is bounded:

•
$$E_{min} = -\sum_{i,j\neq i} |w_{ij}| - \sum_i |b_i|$$

- The minimum variation of E in a "flip" is:
 - $|\Delta E|_{min} = \min_{i,\{y_i,i=1...N\}} 2|\sum_{j\neq i} w_{ji}y_j + b_i|$
- So any sequence of flips must converge in a finite number of steps

The Energy of a Hopfield Net

• The E is the energy of the network

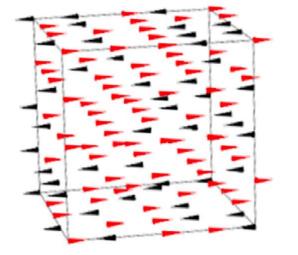
•
$$E(y_1, y_2, ..., y_N) = -\sum_{i,j \neq i} w_{ij} y_i y_j - \sum_i b_i y_i$$

- The evolution of a Hopfield network decreases its energy
- Analogy: Spin Glass

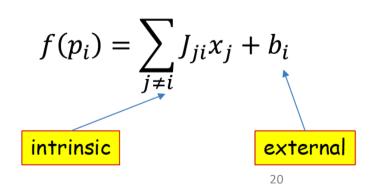
PEKING UNIVERSITY

Spin Glass

- Each dipole in a disordered magnetic material tries to align itself to the local field
 - --Filp
- p_i is vector position of i-th dipole
 - -- output of each neuron y_i
- The contribution of a dipole to the field depends on interaction J
 - -- Weight *w*_{*ij*}
 - Derived from the "Ising" model for magnetic materials (Ising and Lenz, 1924)

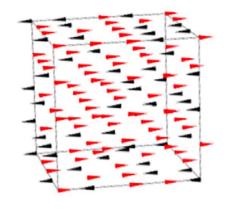


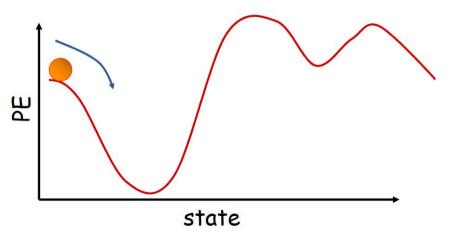
Total field at current dipole:



Spin Glass

- The system stops at one of its stable point
 - local minimum of the energy
- Every point will return to the stable point after evolving
 - The system remembers its stable state



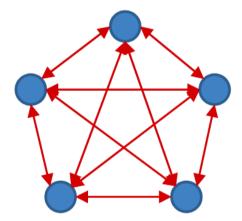


Contents

• Discrete Hopfield Neural Networks

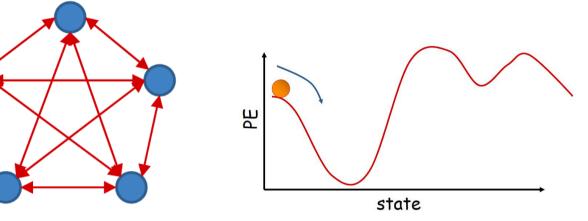
- Introduction
- How to use
- How to train
- Thinking
- Continuous Hopfield Neural Networks

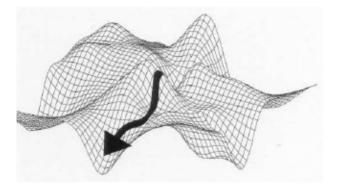
Hopfield Network



- The bias is typically not utilised
 - It's similar to having a single extra neuron that is pegged to 1.0
- The network will evolve until it arrives at a local minimum in the energy contour

Content-addressable memory

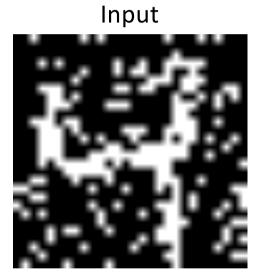




- Each minima is a "stored" pattern
 - How to store?
- Recall memory content from partial or corrupt values
- Also called associative memory
- The path is not unique

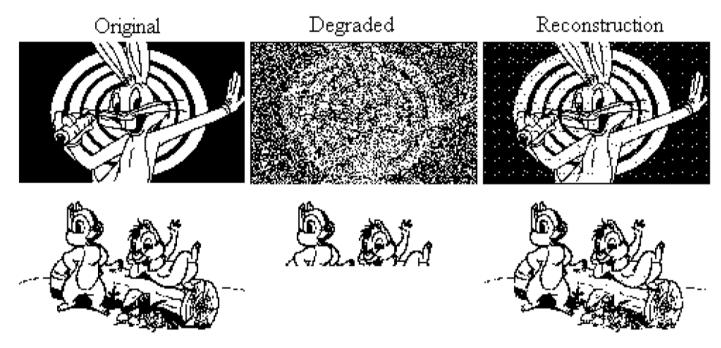
Real-world Examples

• Take advantage of content-addressable memory



Process of Evolution

Real-world Examples



Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield

Computation

1. Initialise network with initial pattern

 $y_i = x_i, \qquad 0 \le i \le N - 1$

2. Iterate until convergence

$$y_i = f\left(\sum_{j \neq i} w_{ji} y_j + b_i\right), 0 \le i \le N - 1$$

- Updates can be done sequentially, or all at once
 - Usually update all nodes once per epoch
 - In one epoch, the nodes are updated randomly
- The system will converge to the local minimum
 - Not deterministic

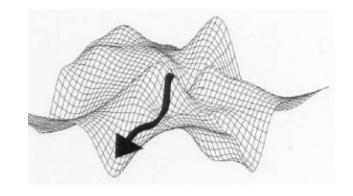
Evolution

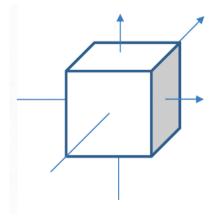
• The energy is a quadratic function.

•
$$E = -\sum_{i,j \neq i} w_{ij} y_i y_j - \sum_i b_i y_i$$

• $E = -\frac{1}{2} y^T W y - b^T y$

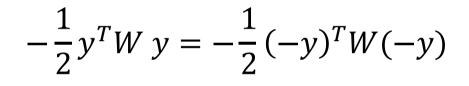
- But why not global minimum?
- For DHN, the energy contour is only defined on a lattice
 - Corners of a unit cube on $[-1, 1]^N$

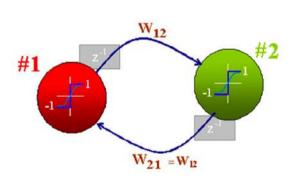


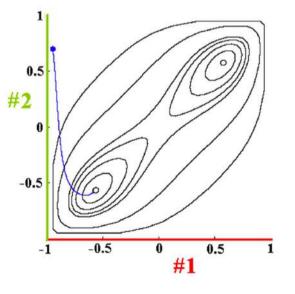


Evolution

- If we use tanh for activation
 - Still not global minimum, why?
 - Local minimum still exists
- An example for a 2-neuron net
 - Without bias, the local minimum is symmetric, why?







Contents

• Discrete Hopfield Neural Networks

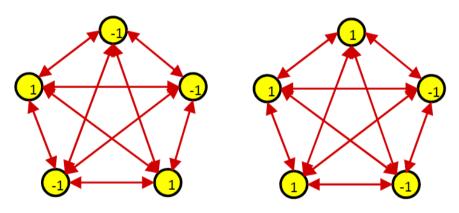
- Introduction
- How to use
- How to train
- Thinking
- Continuous Hopfield Neural Networks

Issues to be solved

- How to store a specific pattern?
- How many patterns can we store?
- How to "retrieve" patterns better?

How to store a specific pattern?

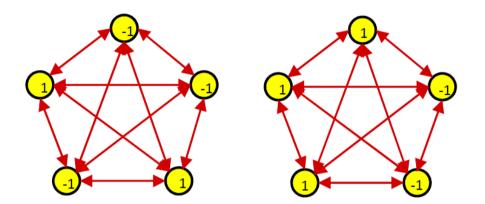
- For an image with N pixels, we need:
 - N neurons
 - $\frac{N(N-1)}{2}$ weights (symmetric)
- Consider the setting without bias
 - $E = -\sum_{i,j\neq i} w_{ij} y_i y_j$



• Goal: Design W so that the energy is local minimum at pattern $P = \{y_i\}$

Method1: Hebbian Learning

- We want:
 - $f(\sum_{j\neq i} w_{ji}y_j) = y_i \forall i$
- Hebbian Learning:
 - $w_{ji} = y_j y_i$



- $f\left(\sum_{j\neq i} w_{ji} y_j\right) = f\left(\sum_{j\neq i} y_j y_i y_j\right) = f\left(\sum_{j\neq i} y_j^2 y_i\right) = f(y_i) = y_i$
- The pattern is stationary

•
$$E_{\min} = -\sum_{i,j\neq i} w_{ij} y_i y_j = -\frac{1}{2} N(N-1)$$

PEKING UNIVERSITY

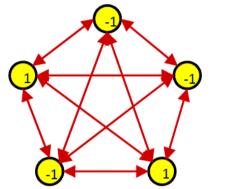
Method1: Hebbian Learning

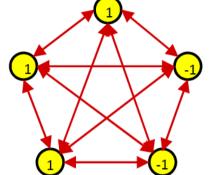
- Note:
 - If we store P, we will also store –P
- For K patterns:

•
$$y_k = [y_1^k, y_2^k, ..., y_N^k], k = 1, ..., K$$

•
$$w_{ij} = \frac{1}{N} \sum_k y_i^k y_j^k$$

• Each pattern is stable

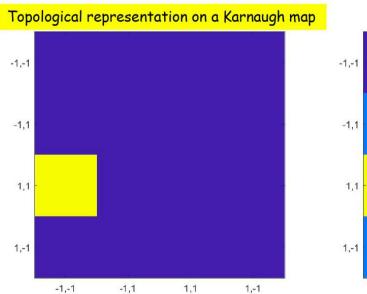


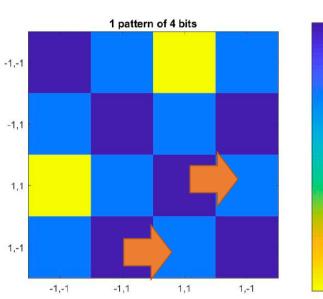


- A network of N neurons trained by Hebbian learning can store ~0.14N patterns with low probability of error (<0.4%)
 - Assume P(bit=1)=0.5
 - Patterns are orthogonal maximally distant
 - The maximum Hamming distance between two N-bit patterns is N/2 (because symmetry)
 - Two patterns differ in N/2 bits are orthogonal
- The proof can be found in 11-785 CMU Lec 17

Method1: Hebbian Learning - Example: 4-bit pattern

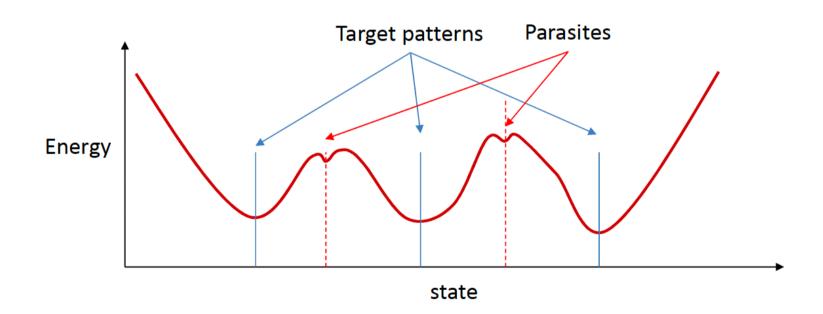
- Left: stored pattern. Right: energy map
- Local minima exists





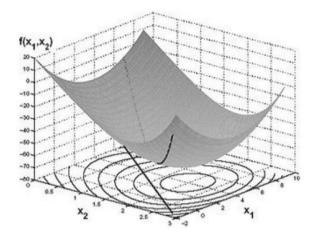
Method1: Hebbian Learning - Parasitic Patterns

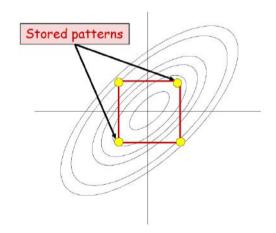
• Parasitic patterns are not expected



Method2: Geometric approach

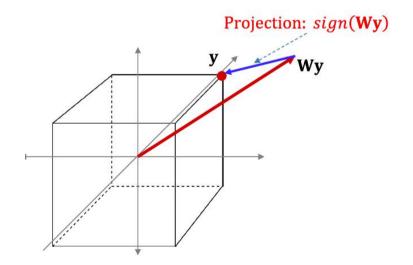
- Consider $W = yy^T$ i.e., $w_{ji} = y_j y_i$
 - W is a positive semidefinite matrix
- $E = -\frac{1}{2}y^TWy b^Ty$ is convex quadratic
- But remember y is the corner of the unit hypercube





Method2: Geometric approach

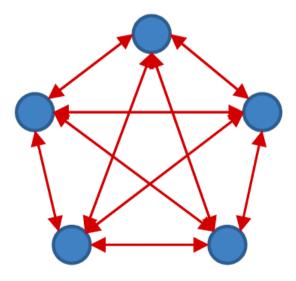
- Evolution of the network:
 - Rotate y and project it onto the nearest corner.



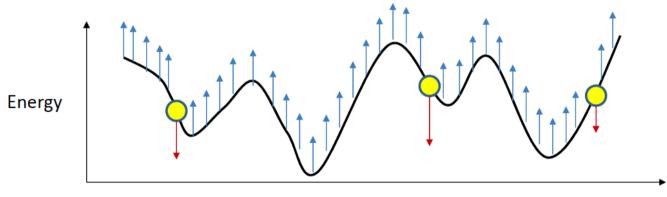
Method2: Geometric approach

- Goal: Design W such that f(Wy) = y
- Simple solution: y is the Eigenvector of W
 - Note the eigenvalue of W are non-negative
 - The eigenvector of any symmetric matrix are orthogonal
- Storing K orthogonal patterns $Y = [y_1, y_2, ..., y_K]$
 - $W = Y \Lambda Y^T$
 - Λ is a positive diagonal matrix $diag(\lambda_1, \lambda_2, ..., \lambda_K)$
 - Hebbian rule: $\lambda = 1$.
 - All patterns are equally important

- $E = -\frac{1}{2}y^T W y b^T y$
- This must be maximally low for target patterns
- Also must be maximally high for all other patterns
- $W = argmin_W \sum_{y \in Y_p} E(y) \sum_{y \notin Y_p} E(y)$ Y_p : set of target pattern

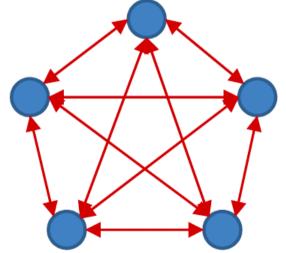


- $W = argmin_W \sum_{y \in Y_p} E(y) \sum_{y \notin Y_p} E(y)$
- Y_p: set of target pattern
- Intuitively:

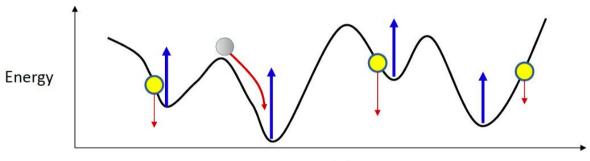


state

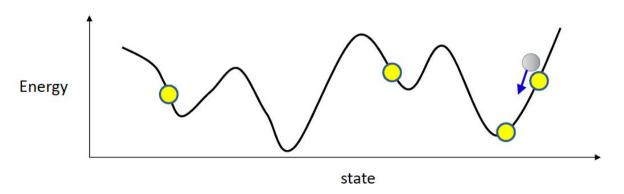
- $W = argmin_W \sum_{y \in Y_p} E(y) \sum_{y \notin Y_p} E(y)$, where $E = -\frac{1}{2}y^T W y b^T y$
- So gradient descent:
 - $W := W + \alpha(\sum_{y \in Y_p} yy^T \sum_{y \notin Y_p} yy^T)$
- Repeating a pattern can emphasise the importance
- What about $y \notin Yp$?



- $W := W + \alpha(\sum_{y \in Y_p} yy^T \sum_{y \notin Y_p} yy^T)$
- We only need to focus on valleys.
- How to find valleys?
- Random sample and let it evolve



- $W := W + \alpha(\sum_{y \in Y_p} yy^T \sum_{y \notin Y_P, y = valley} yy^T)$
- Initialise W
- Repeat until convergence or limitation:
 - Sample target pattern
 - Initialise the network with target pattern and let it evolve a few steps
 - Update weights



Contents

• Discrete Hopfield Neural Networks

- Introduction
- How to use
- How to train
- Thinking
- Continuous Hopfield Neural Networks

Thinking

- The capacity of Hopfield Network
 - How many patterns can be stored?
 - Orthogonal <N; Non-orthogonal?
- Something bad happens:
 - When noise increase... ullet

标准(数字2)

标准(数字1)

识别(数字2)

标准(数字1)

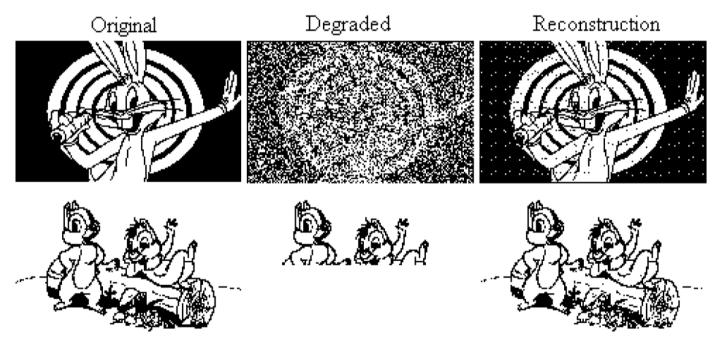
识别(数字2)

北京大学

PEKING UNIVERSITY

Thinking

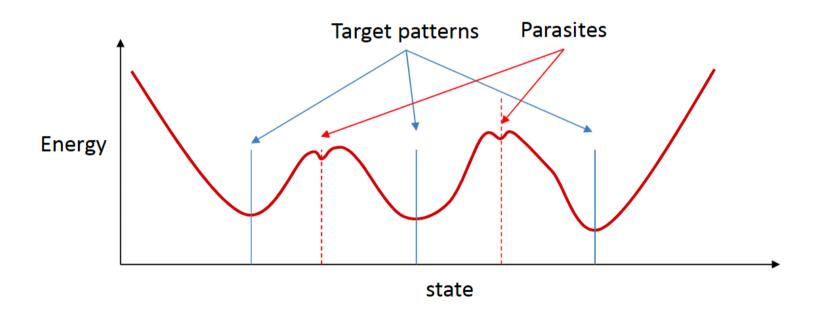
- Something bad happens:
 - The results are not perfect...



Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

Thinking

- Something bad happens:
 - The results are not perfect...
 - Because of the local minima



Thinking – Stochastic Hopfield Net

- Something bad happens:
 - The results are not perfect...
- We can make Hopfield net stochastic
 - Each neuron responds probabilistically
 - If the difference if not large, the probability of flipping approaches 0.5
 - T is a "temperature" parameter

$$z_i = \frac{1}{T} \sum_{j \neq i} w_{ij} y_j + b_i$$
$$P(y_i = 1) = \sigma(z_i)$$
$$P(y_i = -1) = 1 - \sigma(z_i)$$

53

Thinking – Stochastic Hopfield Nets

- What's the final state? (How do we recall a memory?)
 - The average of the final few iterations

$$\mathbf{y} = \left(\frac{1}{M} \sum_{t=L-M+1}^{L} \mathbf{y}_t\right) > 0?$$

Contents

- Discrete Hopfield Neural Networks
 - Introduction
 - How to use
 - How to train
 - Thinking

• Continuous Hopfield Neural Networks

Continuous Hopfield Neural Network

• Energy function :

$$E = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} V_i V_j - \sum_{i=1}^{n} V_i I_i + \sum_{i=1}^{n} \frac{1}{R} \int_{1}^{V_i} f^{-1}(v) dv$$

- The output of each neuron are real numbers in [-1,+1]
- Application: optimisation (TSP)
- Issues:
 - Design the energy function for specific problems
 - The variable of the problem and the neuron of the CHNN

Reference

• CMU 11-785 Lec17, 18

Thanks