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• GAN	is	a	couple	of	Generator	and	Discriminator;	its	training	process	is	a	min-max	
game	as	follows:

• min
!
max
"

𝑉 𝐷, 𝐺 = min
!

max
"

𝔼𝒙~%!"#" log 𝐷(𝒙) + 𝔼𝒛~%$ log(1 − 𝐷(𝐺 𝒛 )

• Theoretical guarantee: This min-max game has a global optimum for 𝑝' = 𝑝()*)

• However there remains some fundamental problems of GAN training.

• Note that when we say “manifold 𝑃” where 𝑃 is indeed a probability distribution, we 
actually refer to the support set of distribution 𝑃.

• This lecture: Towards a solid understanding of GAN training.
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min
+∈ℳ

ℒ(𝑝()*), 𝑝+)

So far
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Understanding Generative Adversarial Networks

a super solution

problems: what and why
background knowledge
some solutions
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• Improved Technique for Generator Loss

• Vanilla Generator Loss:
• Given min

!
max
"

𝑉 𝐷, 𝐺 = min
!

max
"

𝔼.~%!"#" log 𝐷(𝑥) + 𝔼/~%$ log(1 − 𝐷(𝐺 𝑧 )

• If we deduce ℒ" and ℒ! directly from min-max equation, then we get:

• ℒ " = − 𝔼𝒙~%!"#" log 𝐷(𝒙) − 𝔼𝒛~%$ log(1 − 𝐷 𝐺 𝒛 )

• ℒ! = 𝐸/~%$[log(1 − 𝐷(𝐺(𝑧)))] (Vanilla GAN)

• In early training stage: Vanishing Gradient

• 𝐷 is easy to distinguish generated sample 𝐺 𝑧 from real images 𝑥

When 𝛻log(𝑎) = 0
)

>>   𝛻log(1 − 𝑎) = 0
)10
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• Improved Technique for Generator Loss

• If we deduce ℒ! directly from min-max equation, then we get:
• ℒ! = 𝐸/~%$[log(1 − 𝐷(𝐺(𝑧)))] (Vanilla GAN)

• Improved Generator Loss:

• Known |𝛻 log 𝐴 | = | 0
2
| is significantly larger than |𝛻 log 1 − 𝐴 | = | 0

210
|

• It is the same: ℒ!′ = −𝐸/~%$[log(𝐷(𝐺(𝑧)))] (Improved GAN)
• Minimising ℒ!′ is equivalent to minimise ℒ! , while providing larger gradient for 

the generator in early stage training. 

• Also have 
min
!
max
"

𝑉 𝐷, 𝐺 = min
!

max
"

𝔼.~%!"#" log 𝐷(𝑥) + 𝔼/~%$ log(1 − 𝐷(𝐺 𝑧 )

𝐺 ∗= max
!
𝔼𝒛~%$ log 𝐷(𝐺 𝒛 )

= min
!
𝔼𝒛~%$ log(1 − 𝐷(𝐺 𝒛 ))
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Fundamental Problems of Two Types of GAN

• In the following slides, we denote GAN with improved generator loss as Improved GAN. 

• Then we claim that these two types of GAN suffer from some fundamental problems 
respectively:

• Vanilla GAN: Vanishing Gradient

• Improved GAN: Mode collapse and Oscillations

KLD



Fundamental Problems of Two Types of GAN

• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Model Collapse

• An Empirical Observation v.s. Theoretical Induction:
• What would happen if we just train D till converge?

• Theoretically:
• 𝐷∗ = %%

%& 4 %%
• 𝐿! = −𝑙𝑜𝑔4 + 2𝐽𝑆(𝑝5||𝑝')

• Empirically, no gradient for G:

• 𝐷∗(𝑥) = ]
0 𝑖𝑓 𝑥 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑓𝑟𝑜𝑚 𝑃5
1 𝑖𝑓 𝑥 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑓𝑟𝑜𝑚 𝑃'

• 𝛻.𝐸/~%$[log(1 − 𝐷∗(𝐺(𝑧)))] ≈ 0 (Gradient Vanishing)

KLD

Why?

𝐽𝑆(𝑃| 𝑄 = 𝐾𝐿(𝑃||
𝑃 + 𝑄
2

) + 𝐾𝐿(𝑄||
𝑃 + 𝑄
2

)



Fundamental Problems of Two Types of GAN
• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse

• Based on empirical observations, we can intuitively thinking:
• In what case can we classify two manifolds totally?

• Two manifolds can be separated?
• Consider the extreme case:

• When support sets of 𝑃5 , 𝑃' can be separated:
• Then for any 𝑥 ∈ 𝑃5 ∪ 𝑃', there’re only 2 cases:

• Case 1: 𝑃5 𝑥 = 0, 𝑃' 𝑥 ≠ 0
• Case 2: 𝑃5 𝑥 ≠ 0, 𝑃' 𝑥 = 0

• In both case the 𝐽𝑆(𝑃5| 𝑃' = 2 ∗ 0
B
∗ 𝑙𝑜𝑔2 = 𝑙𝑜𝑔2

• So 𝐿! = 2𝐽𝑆(𝑃5| 𝑃' − 𝑙𝑜𝑔4 = 0

KLD



Fundamental Problems of Two Types of GAN
• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse

• Under the assumption that 𝑃5 and 𝑃' can be separated, we can explain the reason.
• But why?

• Firstly, it’s reasonable to assume that 𝑃5 and 𝑃' are low-dimension manifolds.
• s

• So 𝑃' is low-dimension manifold.
• There is strong.

• Empirical and theoretical evidence to believe that 𝑃5 is indeed extremely concentrated on 
a low dimensional manifold

KLD



Fundamental Problems of Two Types of GAN
• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse

• Intuitively, when 𝑃5 𝑎𝑛𝑑 𝑃' are both low-dimensional, then they have “nearly no 
intersection” with a probability of 1. 
• The following lemma claim the same idea.
• s

KLD



Fundamental Problems of Two Types of GAN

• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse

• Just as last section, we analyse the case when D is trained to optimum:
• 1）𝐿" = 𝐸.~C% 𝑙𝑜𝑔 𝐷∗ 𝑥 + 𝐸.~C& 𝑙𝑜𝑔 1 − 𝐷∗ 𝑥 = 2𝐽𝑆(𝑃5| 𝑃' − 𝑙𝑜𝑔4

• 2）𝐾𝐿(𝑃'| 𝑃5 = 𝐸C& 𝑙𝑜𝑔
'&

'&('%
'%

'&('%

= 𝐸.~C& 𝑙𝑜𝑔 01"∗ .
"∗ .

= 𝐸.~C& 1 − 𝐷∗ 𝑥 − 𝐸.~C& 𝐷
∗ 𝑥

• Then implied by 1）and 2）:
• 𝐿! = 𝐸.~C& −𝑙𝑜𝑔𝐷

∗ 𝑥 = 𝐾𝐿(𝑃'| 𝑃5 − 𝐸.~C&𝑙𝑜𝑔(1 − 𝐷∗ 𝑥 ) [implied by 2.] 
= 𝐾𝐿(𝑃'| 𝑃5 − 2𝐽𝑆(𝑃'| 𝑃5 + 𝑙𝑜𝑔4 + 𝐸.~C%𝑙𝑜𝑔𝐷

∗ 𝑥 [implied by 1.]                               
• 𝑚𝑖𝑛 𝐿! = 𝑚𝑖𝑛 𝐾𝐿(𝑃'| 𝑃5 − 2𝐽𝑆(𝑃'| 𝑃5

KLD



Fundamental Problems of Two Types of GAN

• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse

• 𝑚𝑖𝑛 𝐿! = 𝑚𝑖𝑛 𝐾𝐿(𝑃'| 𝑃5 − 2𝐽𝑆(𝑃'| 𝑃5
• Rediculous? Note that if we want to minimise 𝐿!, then we are “pulling” 
𝑃5 𝑎𝑛𝑑 𝑃' closer and farther at the same time

• This leads to the gradient oscillations

KLD



Fundamental Problems of Two Types of GAN

• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse



Fundamental Problems of Two Types of GAN

• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse

• 𝑚𝑖𝑛 𝐿! = 𝑚𝑖𝑛 𝐾𝐿(𝑃'| 𝑃5 − 2𝐽𝑆(𝑃'| 𝑃5

• 𝐾𝐿(𝑃'| 𝑃5 = ∫𝑃' 𝑥 𝑙𝑜𝑔
C& .
C% .

𝑑𝑥, there’re two types of “error”.

• Err i. 𝑃' 𝑥 → 0, 𝑃5 𝑥 > 0, lack of “diversity”

• Err ii. 𝑃' 𝑥 > 0, 𝑃5 𝑥 → 0, generate “fake” image 

• Obviously, KL “punishes” type ii. more than type i.

KLD



Fundamental Problems of Two Types of GAN

• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse

• 𝑚𝑖𝑛 𝐿! = 𝑚𝑖𝑛 𝐾𝐿(𝑃'| 𝑃5 − 2𝐽𝑆(𝑃'| 𝑃5

• Further, to minimise −2𝐽𝑆(𝑃'||𝑃5), Err i. is “encouraged” to be more severe.

KLD



Fundamental Problems of Two Types of GAN

• Vanilla GAN: Vanishing Gradient
• Improved GAN: Oscillations and Mode Collapse

• 𝑚𝑖𝑛 𝐿! = 𝑚𝑖𝑛 𝐾𝐿(𝑃'| 𝑃5 − 2𝐽𝑆(𝑃'| 𝑃5

• Mode collapse examples …

KLD



Fundamental Problems of Two Types of GAN

• Vanilla GAN: Vanishing Gradient

• Improved GAN: Mode collapse and Oscillations
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background for Wassertein GAN



23

Wasserstein Distance

• As we seen, the fundamental problem of (vanilla) GAN is due to the defects of JSD. Now 
we introduce a new distance.

• 𝑊(𝑃5| 𝑃𝑔 = inf
D∈∏ C&,C5

𝔼 .,G ~D |𝑥 − 𝑦 |

where ∏(𝑃𝑟, 𝑃𝑔) denotes all possible joints distributions that have marginals Pr and Pg
• Wasserstein distance also goes by “earth mover’s distance”, the amount of “dirt” that 

needs to be moved to transport one distribution to the other.

Joint distribution

Joint distribution
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Wasserstein Distance

𝛾1

𝛾2
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Wasserstein Distance

𝑊(𝑃| 𝑄 = 𝑖𝑛𝑓
D∈∏ C,H

𝔼 .,G ~D |𝑥 − 𝑦| = |𝜃|

• W-distance is “better” than JSD, and JSD is “better ” than KLD.
• W-distance is a better way to measure the distance between two distributions when 

their support sets hardly have intersection.  
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A Temporal Solution: Before Wasserstein GAN

• Considering how to solve the gradient vanishing problem of Vanilla GAN
• The problem comes from their having “nearly no intersection”, due to low-dimension.
• Idea: Add a “𝜖-ball ” to each point in manifold, then a low-dimensional manifold 

“level-up” to full-dimensional manifold!
• Method: Add a random vector with mean 0 and variance 𝜖 to each point of 𝑃5 and 𝑃'
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A Temporal Solution: Before Wasserstein GAN

• Relationship with Wasserstein distance

• Let 𝑃54I 𝑎𝑛𝑑 𝑃'4I denote the resulting manifolds respectively. Then by 
bounding the 𝜖 and 𝐽𝑆(𝑃54I||𝑃'4I), we can bound 𝑊(𝑃5| 𝑃' :
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Wasserstein GAN

• Kantorovich-Rubinstein duality
• Lipschitz Continuity
• Wasserstein GAN

• Now we attempt to design a method to minimize the W-distance between 𝑃5 and 𝑃'

• 𝑊(𝑃5| 𝑃' = inf
D∈∏ C%,C&

𝔼 .,G ~D | 𝑥 − 𝑦 |

Obviously, calculating the above estimation is an intractable problem.
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Wasserstein GAN

• Kantorovich-Rubinstein duality
• Lipschitz Continuity
• Wasserstein GAN

• Now we attempt to design a method to minimize the W-distance between 𝑃5 and 𝑃'

• Kantorovich-Rubinstein duality:
• 𝑊(𝑃5| 𝑃' = 0

J
m𝑎𝑥
K *LJ

𝔼.~C%𝑓 𝑥 − 𝔼.~C&𝑓(𝑥)

• For function 𝑓 , 𝑓 M denotes its Lipschitz-constant.
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Wasserstein GAN

• Kantorovich-Rubinstein duality
• Lipschitz Continuity
• Wasserstein GAN

• In particular, a real-valued function 𝑓: 𝑅N → 𝑅 is called Lipschitz continuous if there 
exists a positive real constant 𝐾 such that, for all 𝑥0, 𝑥B ∈ 𝑅N:

• 𝑓 𝑥0 − 𝑓 𝑥B ≤ 𝐾 𝑥0 − 𝑥B

• If a function is derivable and its gradient is bounded

• Then it is Lipschitz continuous
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Wasserstein GAN

• Kantorovich-Rubinstein duality
• Lipschitz Continuity
• Wasserstein GAN

• Further, consider two functions 𝑓0, 𝑓B are both Lipschitz continuous, say with constants 
𝐾0 , 𝐾B ,then the composition is also Lipschitz:

• 𝑓0 𝑓B 𝑥 − 𝑓0 𝑓B 𝑦 ≤ 𝐾0 𝑓B 𝑥 − 𝑓B 𝑦 ≤ 𝐾0𝐾B||𝑥 − 𝑦||

• So if a neural network is composed of layers that Lipschitz continuous, then the network 
is Lipschitz continuous.
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Wasserstein GAN

• Kantorovich-Rubinstein duality
• Lipschitz Continuity
• Wasserstein GAN

• Now we introduce our new objective

• To minimise 𝑊(𝑃5| 𝑃' = 0
J
m𝑎𝑥
K *LJ

𝔼.~C%𝑓 𝑥 − 𝔼.~C&𝑓(𝑥)

• Equivalent to min
O

𝑊(𝑃5| 𝑃' = 0
J
min
O

m𝑎𝑥
K *LJ

𝔼.~C%𝑓 𝑥 − 𝔼.~C&𝑓(𝑥)

• Equivalent to min
O

𝑊(𝑃5| 𝑃' = min
O

m𝑎𝑥
" *LJ

𝔼.~C%𝐷 𝑥 − 𝔼.~C&𝐷(𝑥)
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Wasserstein GAN

• Kantorovich-Rubinstein duality
• Lipschitz Continuity
• Wasserstein GAN

• How to optimise this objective: min
O

𝑊(𝑃5| 𝑃' = min
O

m𝑎𝑥
" *LJ

𝔼.~C%𝐷 𝑥 − 𝔼.~C&𝐷(𝑥)

• First step, fix G update D: m𝑎𝑥
" *LJ

𝔼.~C%𝐷 𝑥 − 𝔼.~C&𝐷(𝑥)

• Second step, fix D update G: min
O
𝔼.~C%𝐷 𝑥 − 𝔼.~C&𝐷(𝑥)

• Obviously , the key is the first step: maximise 𝔼.~C%𝐷 𝑥 − 𝔼.~C&𝐷 𝑥 , while 
keeping the condition that 𝐷 M ≤ 𝐾



36

Wasserstein GAN

• Kantorovich-Rubinstein duality
• Lipschitz Continuity
• Wasserstein GAN

• Idea: Updating D with 𝔼.~C%𝐷 𝑥 − 𝔼.~C&𝐷(𝑥), then clip every weight in D to [−𝑐, 𝑐]
where c is a constant e.g. 𝑐 = 1

• After clipping, as each weight  in D’s each layer is bounded, then there’s theorem 
claim that each layer is Lipschitz continuous.

• Since each layer of D is Lipschitz continuous, then there always exists a 𝐾, such that 
𝑓 M ≤ 𝐾
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Wasserstein GAN

• Kantorovich-Rubinstein duality
• Lipschitz Continuity
• Wasserstein GAN

• Algorithm:
• 1. Sample a batch 𝑥0, 𝑥B…𝑥N , {𝑧0, 𝑧B… 𝑧N}

• 2. fix 𝐺 , update 𝐷 with objective: m𝑎𝑥
"

𝔼.~C%𝐷 𝑥 − 𝔼.~C&𝐷(𝑥)

• 3.Clip every weight of 𝐷 to [-1, 1]

• 4. fix 𝐷, update 𝐺 with objective: min
O

𝔼.~C%𝐷 𝑥 − 𝔼.~C&𝐷(𝑥)

• Note that, we estimates 𝔼.~C&𝐷(𝑥) ≈
0
N
∑PQ0
N 𝐷(𝐺(𝑧P)), 𝔼.~C%𝐷(𝑥) ≈

0
N
∑PQ0
N 𝐷(𝑥P)
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Wasserstein GAN

• So … WGAN is all you need?

• In practice …

• LSGAN, WGAN-GP …
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Summary: Understanding GANs



Thanks
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