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Convolutional Variational Autoencoder

• Limitations of vanilla VAE
• The size of weight of fully connected layer == input size x output size
• If VAE uses fully connected layers only, will lead to curse of dimensionality 

when the input dimension is large (e.g., image). 

• Solution

Image is modified from: Deep Clustering with Convolutional Autoencoder. NIPS 2017.

Fully connected layers here
(independent variables)
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Conditional Variational Autoencoder

• Train and inference with labeled data.

Learning structured output representa8on using deep condi8onal genera8ve models. NeurIPS 2015.
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Recap: Variational Autoencoder

Auto-Encoding Variational Bayes. Diederik P. Kingma, Max Welling. ICLR 2013

• Recap: Setting up the objective
• Maximize P(X)
• Set Q(z) to be an arbitrary distribution
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Recap: Variational Autoencoder

Auto-Encoding Variational Bayes. Diederik P. Kingma, Max Welling. ICLR 2013

• Recap: Setting up the objective

encoder ideal reconstruction KLD
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Conditional Variational Autoencoder

Learning structured output representation using deep conditional generative models. NeurIPS 2015.

• Setting up the objective with labels
• Maximize P(Y|X)
• Set Q(z) to be an arbitrary distribution
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Conditional Variational Autoencoder

Learning structured output representation using deep conditional generative models. NeurIPS 2015.

• Setting up the objective

encoder ideal

reconstruction KLD
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Conditional Variational Autoencoder

• Train and inference without labeled data i.e., vanilla VAE

Learning structured output representation using deep conditional generative models. NeurIPS 2015.
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Conditional Variational Autoencoder

• Train and inference with labeled data.

Learning structured output representation using deep conditional generative models. NeurIPS 2015.
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Conditional Variational Autoencoder
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• Train and inference with labeled data.

Learning structured output representation using deep conditional generative models. NeurIPS 2015.
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Before we start

• Disentangled / Factorized representation
• Each variable in the inferred latent representation is only sensitive to one 

single generative factor and relatively invariant to other factors
• Good interpretability and easy generalization to a variety of tasks

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.



17

Before we start

• Unsupervised hierarchical representation learning

Rethinking Style and Content Disentanglement in Variational Autoencoders. ICLR 2018 Workshops.
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β-VAE

• Unsupervised representation learning
• Augment the original VAE framework with a single hyper-parameter β 

that modulates the learning constraints
• Impose a limit on the capacity of the latent information channel

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.
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β-VAE

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.
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β-VAE

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.
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β-VAE

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.
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β-VAE

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.
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β-VAE

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.



24

β-VAE

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.
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β-VAE

• Discussion: It is really unsupervised?

• It is unsupervised/self-supervised learning, because it does not need any label 
data

• It is not fully unsupervised learning, it works because of the inductive bias of the 
neural network model, the hierarchical design introduces prior knowledge about 
the data

β-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Irina Higgins, Loic Matthey, Arka Pal, 
Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. ICLR 2017.
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IWAE

Importance Weighted Autoencoders. ICLR 2016.

• Optimize a tighter lower bound than VAE
• VAE just optimizes a lower bound of log P(X)

encoder ideal reconstruction KLD

-ELBO
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IWAE

Importance Weighted Autoencoders. ICLR 2016.

• Optimize a tighter lower bound than VAE
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IWAE

Importance Weighted Autoencoders. ICLR 2016.
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IWAE

Importance Weighted Autoencoders. ICLR 2016.

• Why “Importance weighted”

where
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Ladder VAE

• To learn hierarchical latent representation
• Deep models with several layers of dependent stochastic variables are difficult to train 

• Limiting the improvements obtained using these highly expressive models

LVAE: Ladder Variational Autoencoder. Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. NIPS 2016.
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Ladder VAE

LVAE: Ladder Variational Autoencoder. Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. NIPS 2016.

encode decode encode decode

Hierarchical VAE Ladder VAE
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Ladder VAE

LVAE: Ladder Variational Autoencoder. Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. NIPS 2016.
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Ladder VAE

LVAE: Ladder Variational Autoencoder. Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. NIPS 2016.
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Ladder VAE

LVAE: Ladder Variational Autoencoder. Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. NIPS 2016.
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Ladder VAE

LVAE: Ladder Variational Autoencoder. Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. NIPS 2016.
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Ladder VAE

LVAE: Ladder Variational Autoencoder. Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. NIPS 2016.
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Ladder VAE

LVAE: Ladder Variational Autoencoder. Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. NIPS 2016.
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Progressive + Fade-in VAE

• Discussion

Progressive Learning and Disentanglement of Hierarchical Representations. ICLR 2020.

encoders decoders

high-level

middle-level

low-level

Can we directly train a hierarchical VAE with ladder 
structure like that?
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Progressive + Fade-in VAE

• Discussion

Progressive Learning and Disentanglement of Hierarchical Representations. ICLR 2020.

encoders decoders

high-level

middle-level

low-level

Information SHORTCUT problem
all information go through the low-level path,
other paths are ignored.
model is lazy…
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Progressive + Fade-in VAE

• Progressive + Fade-in

Progressive Learning and Disentanglement of Hierarchical Representations. ICLR 2020.

Stage 1: enable high-level path Stage 2: enable high-level 
and middle paths

Stage 3: enable all paths  …

𝛼 increase from 0 to 1 gradually
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Progressive + Fade-in VAE

• Results

Progressive Learning and Disentanglement of Hierarchical Representations. ICLR 2020.

High-level: background and foreground colors

Middle-level: shape

Low-level: …
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Progressive + Fade-in VAE

• Results

Progressive Learning and Disentanglement of Hierarchical Representations. ICLR 2020.

High-level Middle-level Low-level
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VAE in speech

• Learning latent representations for style control 
and transfer in end-to-end speech synthesis

• RNN as encoder

Learning latent representations for style control and transfer in end-to-end speech synthesis. ICASSP 2019.
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TD-VAE

• To model temporal information

Temporal Difference VAE. ICLR 2019.
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TD-VAE

• State-space model as a Markov Chain model

Temporal Difference VAE. ICLR 2019.
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TD-VAE

Temporal Difference VAE. ICLR 2019.
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TD-VAE

Temporal Difference VAE. ICLR 2019.
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TD-VAE

Temporal Difference VAE. ICLR 2019.
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TD-VAE

Temporal Difference VAE. ICLR 2019.
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TD-VAE

Temporal Difference VAE. ICLR 2019.
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