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Autoregressive Models
- Pixel RNN/CNN, WaveNet

Hao Dong

Peking University



(T » g
NELE TS
899

PEKING UNIVERSITY

Autoregressive Models

* Pixel RNN: Pixel CNN, Row LSTM and Diagonal BiLSTM
e Gated PixelCNN
* WaveNet
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* Pixel RNN: Pixel CNN, Row LSTM and Diagonal BiLSTM
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Autoregressive Image Modeling

-Autoregressive models train a network that model the
conditional distribution of every individual pixel given
previous pixels (raster scan orderdependencies).

n2
p(x) = Hp(fﬁz'\xl, oy Ti—1)
i=1
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Sequentially predict pixels rather than predicting the whole image at once (like as GAN, VAE)

L n2
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Autoregressive Image Modeling

-For colorimage, 3 channels are generated successive conditioning, blue given red and
green, green given red, and red given only the pixels above and to the left of all
channels
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PixelCNN
Pixel Recurrent Neural Networks PixelRNN
* Row LSTM
Adron van den Oord AVDNOORD @GOOGLE.COM ¢ Diagonal BlLSTM
Nal Kalchbrenner NALK @ GOOGLE.COM
Koray Kavukcuoglu KORAYK @GOOGLE.COM

Google DeepMind (ICML 2016 Best Paper)

Conditional Image Generation with Gated PixelCNN

Pixel CNN Decoders WaveNet
WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
Adron van den Oord Nal Kalchbrenner Oriol Vinyals . . . i
Google DeepMind Google DeepMind Google DeepMind Adron van den Oord Sander Dieleman Heiga Zen
avdnoord@google.com nalk@google.com vinyals@google.com

Karen Simonyan Oriol Vinyals Alex Graves

Lasse Espeholt Alex Graves Koray Kavukcuoglu .
Google DeepMind Google DeepMind Google DeepMind Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

espeholt@google.com gravesa@Qgoogle.com korayk@google.com
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Assumption of Autoregressive Models
Fully visible Sigmoid Belief Network (FVSBN)
Neural Autoregressive Density Estimation (NADE)
Real-valued Neural Autoregressive Density Estimation (RNADE)
Autoregressive Autoencoders
Masked Autoencoder for Distribution Estimation (MADE)
Recurrent Neural Networks
Pixel CNN
Gated PixelCNN
WaveNet
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PixelCNN Network Structure

O 00O0O0 Goal. | | | |
OO0 0O O0OO0 * Use the neighbor pixels to predict the new pixel
ONON NONO
O O O
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PixelCNN
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PixelCNN Network Structure

Red Channel, Conv Layer 1
generated |

Conv Layer 1 Conv Layer 2

Image
(N, N, 3, 256)
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PixelCNN Network Structure

2 Layers (with
15 Layers ReLU) Softmax
I

J

f | [ \
1024 feature 256 feature

Two one-by-one Convs
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Pixel CNN Network Structure: Repeat for 3 times for RGB

15 Layers 2 Layers (wnth ReLU) Softmax

1024 feature 256 feature
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When training, something differs...

15 Layers 2 Layers (with ReLU) Softmax
)
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Details of “Masked Convolution” & “BlindSpot”
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To generate next pixel, the model can only condition on the previously generated pixels.

Then, to make sure CNN can only use information about pixels above and to the left of

current pixel, the filters of the convolution need to be masked.

Case 1D

5x1 filter m=(1,1,0,0,0
o%%o’ ' @%
O OO

 Right figure shows 5x1 convolutional filtersafter
multiplying them by mask.

* The filters connecting the input layer to thefirst

* hidden layer are in this case multiplied by m=(1,1,0,0,0),

the model iscausal.

to ensure
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Details of “Masked Convolution” & “BlindSpot”

Case 2D

* |In case of 2D, PixelCNNs have a blind spot in the receptive field that
cannot be used to make predictions.

* Rightmost figure shows the growthof the masked receptive field.
(3 layered network with 3x3 conv filters)

5x5 filter
11 (1]1]1
1 (1 (1]1]1
/ 1({110]0]0
0]10(0]0}0
0(0j0]0]O0
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Details of “Masked Convolution” & “BlindSpot”

Case 2D

* |In case of 2D, PixelCNNs have a blind spot in the receptive field that
cannot be used to make predictions.

* Rightmost figure shows the growthof the masked receptive field.
(3 layered network with 3x3 conv filters)

I/

<+ .-~ Blind spot

3x3 filter, 3 layered



Pixel CNN Drawbacks
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Pixel CNN

Drawbacks:

* Sequential generation is SLOW

Blind spot problem
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Assumption of Autoregressive Models

Fully visible Sigmoid Belief Network (FVSBN)

Neural Autoregressive Density Estimation (NADE)

Real-valued Neural Autoregressive Density Estimation (RNADE)
Autoregressive Autoencoders

Masked Autoencoder for Distribution Estimation (MADE)
Recurrent Neural Networks

Pixel RNN Row LSTM

Gated PixelCNN

WaveNet

18
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Recap RNN...
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cell state forget gate
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With the Convolutional LSTM, we change LSTM

Equations from ... into ...

LSTM Equations
7 = 0(1}1UZ ‘|'hi_1Wi>
f = O(JIiUf + hi_1Wf>
0=o0(z,U°+n;_1W°)

g= tanh(z;U% +h;1W?9)

e

¢;=ci—10f+got
h; = tanh(c;) 0 0

e

Gates - Control how
much information is
allowed through

States - Hold
information about all
time steps up ill
now {0, i, ..., i-1, i}

S »
e 5179y =
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) Like Convolutional LSTM -
LSTM Equat|ons replaced fully-connected

P 0(% w +hi_114/’i) - layer with convolutional layer
f = ozl +na W)
0=0(z;l/’ +n, W)

g = tanh(z,l¥ + 1,17
¢;=C_10f+gos - ¢i=fi0c1+L0g
h; = tanh(c;) 00 h; = 0; O tanh(ci)

= [03,£,1;, 8] = o(K* ® h_; + K* ®x;)




PixelRNN 1: Row LSTM
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So the receptive field...

X/ @ @ @

Q%ﬁﬁf

Triangular receptive
field
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* Pixel RNN Diagonal BiLSTM

24
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PixelRNN2: Diagonal BiLSTM

In the Diagonal BiLSTM, to allow for parallelization along the diagonals, the
input map is skewed by offseting each row by one position with respect to
the previous row. When the spatial layer is computed left to right and
column by column, the output map is shifted back into the original size. The
convolution uses a kernel of size 2 x 1.
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Diagonal BiLSTM: why “Bi”?
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Comparison between the 3 network above...
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PixelCNN Row LSTM Diagonal BiLSTM
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Results of PixelRNN

CIFAR-10 ImageNet 32x32
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Results of PixelRNN

occluded completions original

&y - -
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Figure 1. Image completions sampled from a PixelRNN.




PixelRNN vs. PixelCNN
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PixelRNN PixelCNN
Pros. | , Effectively handles long-range dependencies Convolutions are easier to parallelize
* Good performance -
Much faster to train
Cons. * Each state needs to be computed sequentially. Bounded receptive field

e Computationally expensive

=

Inferior performance
Blind spot problem
(due to the masked convolution)
needs to be eliminated.
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Assumption of Autoregressive Models

Fully visible Sigmoid Belief Network (FVSBN)

Neural Autoregressive Density Estimation (NADE)

Real-valued Neural Autoregressive Density Estimation (RNADE)
Autoregressive Autoencoders

Masked Autoencoder for Distribution Estimation (MADE)
Recurrent Neural Networks

Pixel RNN: Pixel CNN, Row LSTM and Diagonal BiLSTM

Gated PixelCNN

WaveNet

31



N It 7 5 2
Tgoh

PEKING UNIVERSITY

Gated PixelCNN

An improved version of PixelCNN, major improvements are as
follows :

« Removal of blind spots in the receptive field by
combining the horizontal stack and the vertical

stack.

e Replacement of the RelLU activations between the masked
convolutions in the original PixelCNN with the gated activation

unit.
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Gated PixelCNN

* Given a latent vector, they modeled the conditional
distribution of images, Conditional PixelCNN.

* conditioning on class-label

e conditioning on embedding from trained model

* From a convolutional auto-encoder, they replaced the

deconvolutional decoder with conditional PixelCNN, named
PixelCNN Auto-Encoders
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First improvement:
Horizontal stack and Vertical stack

e The removal of blind spots in the receptive field are important for PixelCNN’s
performance, because the blind spot can cover as much as a quarter of the
potential receptive field.

T /</' Vertical stack T
<+ .-~ Blind spot - < .

el Horizontal stack
e The vertical stack conditions on all rows above the current row.

* The horizontal stack conditions on current row.



First improvement:

Horizontal stack and Vertical stack

Mask for PixelCNN

)
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They cause blind spot
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Mask for Gated PixelCNN
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Vertical stack

Why they can be 17

Horizontal stack
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Second improvement:
Gated Activation and Architecture

« Gated activationunit: Y — tanh(Wk,f X X) O O'(Wk’g X X)
(o:sigmoid, k: number of layer, ®: element-wise product, *: convolutional operator)

 Single layer block of a GatedPixelCNN
/

(¥ h'

S D i—': - Masked convolutions are shown ingreen.
| + : - Element-wise operations are shown inred.
: - Convolutions with Wf, Wg arecombined
I into a single operation shown inblue.
I
|
I
|
| p = #feature maps
P : VU = vertical activation maps
Split feature'maps : h = horizontal activation maps
-




Details of Gated PixelCNN architecture ez X ¥

e Break downoperations into four steps.

(1) calculate vertical feature maps

... hxn convolutions are calculated with gated activation.

p = #feature maps

Input: D ( =input image if 1stlayer)

Split feature maps

/
Output: U (ex.n=3)

Feature map 3x3 masked filters

receptive field 5
3 Next problem:

N NN
1,1,1,1
(Ze;O' a'd()jm Inthis case, (i, j)th pixel depends

Two types of P 8 Lo ;
on (i, j+k)th(future) pixels

equivalent

implementation Feature map 2x3 filters ‘

receptive field b

Solution:
Lo Irl

Shift down vertical feature maps
when to feed into horizontal stack.

zero padding
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Details of Gated PixelCNN architecture

(2) Feed vertical maps into horizontalstack

___________________________

1. n x nmasked convolution
2. shifting down operation (asbelow)
3. 1 x 1convolution

p = #feature maps

Input: UV ( =inputimage if 1tlayer)

Split feature maps

o o o - -

Output: Ujnt

Shift down vertical feature maps

when to feed into horizontalstack. Left operations can be interpreted asbelow.

4 )

1. Add zero padding on the top violate causality ensure causality
000 .. oo 1 | jp— e ,

2. Crop thebottom @
Feature map » Feature map / @
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Details of Gated PixelCNN architecture

(3) calculate horizontal feature maps

... Ixn convolutions are calculated with gated activation.
(vertical maps are added before activation.)

p = #feature maps

Input: Vint , h, (input imageif 1stlayer)

Split feature maps

i i i e ' ' i

Output:hint (ex.n=3)
Feature map 1x3 masked filters
receptive field ]
[} Next problem:
(0,0,1,1) ju=_gu > Mask Avs MaskB
Two types of zero padding
equivalent - Mask A(restrict connection
implementation Feature map 1x2 filters from itself) is applied to onlyto
receptive field . ] the first convolution. '
- | Mask B (allow connection from
(0,0,1,0) NI <« | itself) is applied to all the
zero padding subsequent convolution.
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Output layer and whole architecture s e
® Qutput layer

* Using a softmax on discrete pixel values ([0-255] = 256 way) instead of a
mixture density approach. (same approach as PixelRNN)

 Although without prior information about the meaning or relations of the 256
color categories, the distributions predicted by the model are meaningful.

B Whole architecture
Gated PixelCNN layer

Input

Additional 1x1 convlayers

(width) x (height) x(channels)

(width) x (height) x p (#feature maps)
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Conditional PixelCNN & PixelCNN AutoEncoder FENGS.  FERIN GV ERETRY

B Coniditional PixeICNN

original conditional
n2
Model Hp Ti| Ty, ey Ti1). p(x|h) = Hp(a:ﬂxl, iy BT A0 )
i=1

Gated activation unit |° tanh(Wy, ¢ * x) © 0(Wi,g * x)|y = tanh(Wi, s * x + V; h) © 0(Wi g * x + V;/ h)

* They modeled the conditional distribution by adding terms
that depend on hto the activations before the nolinearities

®m PixelCNN AutoEncoder Latent/hidden code

* From a convolutional auto-encoder, they replacedthe
deconvolutional decoder with conditional PixelCNN

Decoder:Deconvolution layers

I Encoder:Convolution layers | * conditional PixelCNN layers




Experimental Results (Unconditional)

B Score: Negative log-likelihood score (bits/dim)

B Data: CIFAR-10 dataset

Model NLL Test (Train)
Uniform Distribution: [30] 8.00
Multivariate Gaussian: [30] 4.70
NICE: [4] 448
Deep Diffusion: [24] 4.20
DRAW: [9] 4.13
Deep GMMs: [31, 29] 4.00
Conv DRAW: [8] 3.58 (3.57)
RIDE: [26, 30] 3.47
Pixel CNN: [30] 3.14 (3.08)
PixelRNN: [30] 3.00 (2.93)
Gated Pixel CNN: 3.03 (2.90)

* Gated PixelCNN outperforms the PixelCNN by 0.11
bits/dim, which has a very significant effect on the visual
quality, and close to the performance of PixelRNN

u\‘sl;,‘. »
N e 7 F
- = f‘ >
18599

® Data: ImageNet dataset

32x32 Model NLL Test (Train)
Conv Draw: [8] 4.40 (4.35)
PixelRNN: [30] 3.86 (3.83)
Gated Pixel CNN: 3.83(3.77)

64x64 Model NLL Test (Train)
Conv Draw: [8] 4.10 (4.04)
PixelRNN: [30] 3.63 (3.57)
Gated Pixel CNN: 3.57 (3.48)

* Gated PixelCNN outperforms PixelRNN.
* Achieve similar performance to the PixelRNN in less
than half the training time.

>4

D
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Experimental Results

® Coniditioning on ImageNet classes B Coniditioning on PortraitEmbeddings

Embeddings are took from top layer of a conv network trained
on a large database of portraits from Flickrimages.

* After the supervised net was trained, {x:image, h:embedding}
tuples are taken and trained conditional PixelCNN to model p(x | h)
Given a new image of a person that was not in the training set,
they computed h and generate new portraits of same person.

« Given a one-hot encoding hi, for the i-th class, model p(x | h) ;

And experimented with reconstructions conditioned on linear
interpolations between embeddingsof pairs of images.
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Experimental Results (PixelCNN Auto-Encoder)

® Data: 32x32 ImageNetpatches (m: dimensionalbottleneck)

(Left to right: original image, reconstruction by auto-encoder, conditional samples from PixelCNNauto-encoder)



‘3‘3.{- ' 7

Assumption of Autoregressive Models

Fully visible Sigmoid Belief Network (FVSBN)

Neural Autoregressive Density Estimation (NADE)

Real-valued Neural Autoregressive Density Estimation (RNADE)
Autoregressive Autoencoders

Masked Autoencoder for Distribution Estimation (MADE)
Recurrent Neural Networks

Pixel RNN: Pixel CNN, Row LSTM and Diagonal BiLSTM

Gated PixelCNN

WaveNet

46
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Motivation

The Autoregressive model (e.g. PixelCNN) has been very successful.
—> What about voice?

| want to do that with a CNN which is more efficient than an RNN.
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WaveNet

This network is similar to PixelCNN.
Here are the contributions:
* Unprecedented quality speech synthesis.

* Efficient architecture with a large receptive field using dilated convolution
* (also voice recognition)
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Recap: Dilated convolution

Roughly speaking, if you really want to use a filter with a large kernel size, you
can use this to get a large kernel and approximate results without increasing
the amount of computation.

New Filter
Filter 5o [0 [7]
0o|1]2 0O 0 0 0 O
B0 E M
0|1]2 0 0 0 0 O
[e] o [ 0 [Z]

Dilation rate = 2X2

Receptive field : 3X3 - 5X%5




Stacked dilated causal convolution

This is a conceptual diagram of the expansion of the receptive field.
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Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input



Entire architecture
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Skip-c

Both residual (Heetal.,2015) and parameterized skip-
connections are used throughout the network, to
speed up convergence and enable training of much
deeper models
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Residual block

1’._1'..

Residual

=— = =

f

lxllxl— Softmax (—# Output

Skip-connections
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Conditional Generation

P(X = speech|Y = sentence)

Output @ @ @ 0 O 0 O 09 0900000 O
Parametric
Hdden ~ ~ ~ ~ &~ & o o o ¢ Y O O O O
Layer oo e R Concatenative
Hidden O O ( D 0O O O C ) O O O ) O O
Layer ~ =~ ~ © - A ' - WaveNet
Hidden .
Layer -
Unconditional

nt © © O 0000000000000

Music

53
WaveNet: A Generative Model for Raw Audio. A. Oord, S. Dieleman et al. arXiv. 2016.
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Summary of Autoregressive Models

Easy to sample from
Sample x o~ p(xo)
Sample x 1~ p(x1 | Xo= xo)
Easy to compute probability p(x =x)
Compute p(xo= Xx0)
Compute p(x1= x 1| x0= Xo)
Multiply together (sum their logarithms)

Ideally, can compute all these terms in parallel for fast training

Easy to extend to continuous variables. For example, can choose Gaussian
conditionals p(xt | x<t) = N (us(x<t),Zs(x<t)) or mixture of logistics

No natural wayto get features, cluster points, do unsupervised learning
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https://arxiv.org/pdf/1601.06759.pdf
Conditional Image Generation with PixelCNN Decoders:
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Thanks
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