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Domain Adaptation

* Single Source Domain Adaptation
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Domain-Adversarial Training of Neural Networks. Y. Ganin, H. Ajakan et al. JMLR. 2016
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Domain Adaptation

* Learn domain-universal & task-discriminative features
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Domain-Adversarial Training of Neural Networks. Y. Ganin, H. Ajakan et al. IMLR. 2016
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Domain Adaptation

* Single Source Domain Adaptation

After adversarial learning

Before adversarial learning
Task Low domain classification loss High domain classification loss
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Source images have label
Target images do not have label

Domain-Adversarial Training of Neural Networks. Y. Ganin, H. Ajakan et al. IMLR. 2016
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* Multiple Source Domain Adaptation
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Source cameras: lots of labeled data
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‘Target cameras: lots of un-labeled data'

EaCINE South 08081 0 16- 06:01: 2 P Source images have label

Target images do not have label

Multiple Source Domain Adaptation with Adversarial Learning. S. Zhang, H. Zhao et al. NIPS. 2018.
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Domain Adaptation
* Multiple Source Domain Adaptation
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Target images do not have label

Multiple Source Domain Adaptation with Adversarial Learning. S. Zhang, H. Zhao et al. NIPS. 2018.
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Domain Adaptation

* Cross Domain Translation + Segmentation

Source Label

Reconstructed Source Image Source Prediction
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Source Image Stylized as Target Target Image

Semantic
Consistency
loss

Source Image

Source: GTA provides labeled maps
Target: real images

CyCADA: Cycle-Consistent Adversarial Domain Adaptation. Hoffman, Judy. Tzeng, Eric. Park, Taesung. Zhu, Jun-yan. Berkeley, U C. Isola, Phillip. Saenko, 9
Kate. Efros, Alexei A. Darrell, Trevor. ICML 2018.
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Adversarial Attack

* WHITE-BOX ATTACK MODELS

* White-box models assume that the attacker has complete knowledge of all
the classifier parameters, i.e., network architecture and weights, as well as
the details of any defense mechanism

» targeted attack: they attempt to cause the perturbed image to be
misclassified to a specific target class

* untargeted attack: when no target class is specified

* BLACK-BOX ATTACK MODELS

* black-box adversaries have no access to the classifier or defense parameters, It is

further assumed that they do not have access to a large training dataset but can
guery the targeted DNN as a black-box.

Defense-Gan: Protecting classifiers against adversarial attacks using generative models
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Adversarial Attack

APE-GAN: adversarial perturbation elimination with GAN

-+ 0.01 *

automobile
97.5%

> APE-GAN

automobile
89.7%

APE-GAN

84.9%

The essence of the model is to eliminate the adversarial perturbations in the samples. The model
use the adversarial samples themselves to generate corresponding real samples.
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APE-GAN: adversarial perturbation elimination with GAN

)

Total loss:
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Adversarial training:
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Adversarial Attack

e Defense-GAN
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Seed Y 3 Minimize z" x =G(z") ~

Random number

generator . ||G(Z) . X’ |% —P Generator > ClaSSIﬁer —> Yy

Input image x T

use legitimate examples in training

* a new defense strategy which uses a WGAN trained on legitimate (un-perturbed)
training samples to “denoise” adversarial examples.

Defense-Gan: Protecting classifiers against adversarial attacks using generative models 15
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Adversarial Attack

* APE-GAN:

* Use adversarial samples as the input of the generator.

e Defense-GAN:

* Use multiple random noise as the input of the generator.
* Implement adversarial training without using adversarial samples as inputs.

 Both of the structures are based on WGAN.
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Meta Learning

 Definition

* In the context of machine learning, meta learning is the process of
learning to learn.

* Informally speaking, a meta learning algorithm uses experience to
change certain aspects of a learning algorithm, or the learning
method itself, such that the modified learner is better than the
original learner at learning from additional experience.

http://www.scholarpedia.org/article/Metalearning 19
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Meta Learning

* Meta Learning Architecture for few-shot learning with generative models

from training set unseen frame face landmark tracks
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In fact, this system can generate a reasonable result based on a single photograph (one-shot
learning), while adding a few more photographs increases the fidelity of personalization

Zakharov E, Shysheya A, Burkov E, et al. Few-shot adversarial learning of realistic neural talking head models[C] 20
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* Meta Learning Architecture for few-shot learning with generative models
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* All parameters of the generator are split into two sets: person-generic parameters 1, and the person-specific

parameters ;.

* During meta-learning, 1 are trained directly, while 1/31- are predicted from the embedding vector

é; using a trainable projection matrix P: 1/3i=

P¢;

21
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Meta Learning

* Meta Learning Architecture for few-shot learning with generative models

T Source

22
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Meta Learning

* Meta Learning Architecture for few-shot learning with generative models
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e Reinforcement Learning
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Reinforcement Learning

« World Models

One way of understanding the predictive model inside of

our brains is that it might not be about just predicting the
future in general, but predicting future sensory data given
our current motor actions

Learning in the imagination == Sampling efficiency

|

https://worldmodels.github.io
29



Reinforcement Learning

« World Models

Original Observed Frame

Encoder @—' Decoder

Reconstructed Frame
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Learn the state representation

Here .. The encoder output is the state

30
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Reinforcement Learning

« World Models

Screenshot |
Screenshot Image shot Image

Load Random Screenshot Randomize Z

In this model, the agent has a visual sensory component
that compresses what it sees into a small representative
code.

Ha D, Schmidhuber J. World models[J]. arXiv preprint arXiv:1803.10122, 2018. 31



Reinforcement Learning

« World Models

At each time step, our agent
receives an observation from
the environment.

World Model
The Vision Model (V) encodes the
high-dimensional observation into
a low-dimensional latent vector.

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict
future states.

A small Controller (C) uses the
representations from both
V and M to select good actions.

The agent performs actions that
go back and affect the environment.
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Our agent consists of three components that work closely together:

Vision (V), Memory (M), and Controller (C).

Learn the state representation

Here .. The encoder output is the state

RNN predicts the action
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Summary

 Domain Adaptation
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e Reinforcement Learning
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Thanks
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