

Challenge: Others

Hao Dong

Peking University

Challenge: Others

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

• InGAN: Capturing and Remapping the "DNA" of a Natural Image

Conditional generative model

Architecture

$$\mathcal{L}_{\text{InGAN}} = \mathcal{L}_{\text{GAN}} + \lambda \cdot \mathcal{L}_{\text{reconst}}$$

$$\mathcal{L}_{\text{GAN}}(G, D) = \mathbb{E}_{y \sim p_{\text{data}}(x)}[(D(x)-1)^2] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[D(G(x))^2]$$

Fake

<u>D labels</u>

1 map

0 map

$$\mathcal{L}_{\text{reconst}} = \left\| G\left(G\left(x;T\right);T^{-1}\right) - x \right\|_{1}$$

Generator architecture

• Adaptive Multi-Scale Patch Discriminator

Multiple Tasks:

Texture synthesis

Multiple Tasks:

 Natural image retargeting

Seam-Carving

BiDir

InGAN

Multiple Tasks:

 Retargeting to Non-Rectangular Outputs

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

• SinGAN: Learning a Generative Model from a Single Natural Image

SinGAN: Unconditional VS. InGAN: Conditional

SinGAN's multi-scale pipeline: A pyramid of GANs

Single scale generation

Training

Sequentially train from the coarsest scale to the finest one

Once each GAN is trained, it is kept fixed

Applications: Super Resolution

trained on a dataset

trained on a single image

• Applications: Paint-to-Image

Applications: Harmonization

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

CNN-generated images are surprisingly easy to spot... for now

Are CNN-generated images hard to distinguish from real images?

A classifier trained to detect images **generated by only one CNN** (ProGAN, far left) **can detect those generated by many other models** (remaining columns)

CNN-generated images are surprisingly easy to spot... for now

ForenSynth: A dataset of CNN-based generation models

Family	Method	Image Source	# Images		
Unconditional GAN	ProGAN [21]	LSUN	8.0k		
	StyleGAN [22]	LSUN	12.0k		
	BigGAN [9]	ImageNet	4.0k		
Conditional GAN	CycleGAN [54]	Style/object transfer	2.6k		
	StarGAN [12]	CelebA	4.0k		
	GauGAN [34]	COCO	10.0k		
Perceptual loss	CRN [11]	GTA	12.8k		
	IMLE [26]	GTA	12.8k		
Low-level vision	SITD [10]	Raw camera	360		
	SAN [15]	Standard SR benchmark	440		
Deepfake	FaceForensics++ [39]	Videos of faces	5.4k		

• CNN-generated images are surprisingly easy to spot... for now

Effect of data augmentation

Family	Name	Training settings				Individual test generators											Total	
		Train	Input	No. Class	Augments		Pro-	Style-	Big-	Cycle-	Star-	Gau-	CRN	IMLE	SITD	SAN	Deep-	mAP
					Blur	JPEG	GAN	GAN	GAN	GAN	GAN	GAN		111122	5112		Fake	
Zhang et al. [50]	Cyc-Im	CycleGAN	RGB	_			84.3	65.7	55.1	100.	99.2	79.9	74.5	90.6	67.8	82.9	53.2	77.6
	Cyc-Spec	CycleGAN	Spec	_			51.4	52.7	79.6	100.	100.	70.8	64.7	71.3	92.2	78.5	44.5	73.2
	Auto-Im	AutoGAN	RGB		. – – –		73.8	60.1	46.1	99.9	100.	49.0	82.5	71.0	80.1	86.7	80.8	75.5
	Auto-Spec	AutoGAN	Spec	_			75.6	68.6	84.9	100.	100.	61.0	80.8	75.3	89.9	66.1	39.0	76.5
Ours	2-class	ProGAN	RGB	2	✓	✓	98.8	78.3	66.4	88.7	87.3	87.4	94.0	97.3	85.2	52.9	58.1	81.3
	4-class	ProGAN	RGB	4	\checkmark	\checkmark	99.8	87.0	74.0	93.2	92.3	94.1	95.8	97.5	87.8	58.5	59.6	85.4
	8-class	ProGAN	RGB	8	\checkmark	\checkmark	99.9	94.2	78.9	94.3	91.9	95.4	98.9	99.4	91.2	58.6	63.8	87.9
	16-class	ProGAN	RGB	16	\checkmark	\checkmark	100.	98.2	87.7	96.4	95.5	98.1	99.0	99.7	95.3	63.1	71.9	91.4
	No aug	ProGAN	RGB	20			100.	96.3	72.2	84.0	100.	67.0	93.5	90.3	96.2	93.6	98.2	90.1
	Blur only	ProGAN	RGB	20	\checkmark		100.	99.0	82.5	90.1	100.	74.7	66.6	66.7	99.6	53.7	95.1	84.4
	JPEG only	ProGAN	RGB	20		\checkmark	100.	99.0	87.8	93.2	91.8	97.5	99.0	99.5	88.7	78.1	88.1	93.0
	Blur+JPEG (0.5)	ProGAN	RGB	20	\checkmark	\checkmark	100.	98.5	88.2	96.8	95.4	98.1	98.9	99.5	92.7	63.9	66.3	90.8
	Blur+JPEG (0.1)	ProGAN	RGB	20	†	†	100.	99.6	84.5	93.5	98.2	89.5	98.2	98.4	97.2	70.5	89.0	92.6

• CNN-generated images are surprisingly easy to spot... for now

Effect of data augmentation

CNN-generated images are surprisingly easy to spot... for now

• CNN-generated images are surprisingly easy to spot... for now

Frequency analysis on each dataset

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

Learning in the Frequency Domain

Why in the frequency domain?

Learning in the Frequency Domain
 Data pre-processing pipeline

Learning in the Frequency Domain
 How to convert into the frequency domain?

Learning in the Frequency Domain
 Channel Selection

Y

Learning in the Frequency Domain

(b) Heat maps of Y, Cb, and Cr components on the COCO validation dataset

Cr

Cb

Learning in the Frequency Domain

Examples of instance segmentation results on the COCO dataset

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

What it learns

GAN Dissection

How to visualize GANs?

How to understand GANs?

Bau, David, et al. "Gan dissection: Visualizing and understanding generative adversarial networks." arXiv preprint arXiv:1811.10597 (2018).

What it learns

GAN Dissection

Analytical Framework: Characterizing Units by **Dissection**

What it learns

GAN Dissection

Analytical Framework: Measuring Causal Relationships Using Intervention

GAN Dissection

Finding concepts

(b) Identify GAN units that match trees

(d) Activating units adds trees

GAN Dissection
 Effect of Intervention

GAN Dissection

Results

(b) Bedroom images with artifacts

(c) Ablating "artifact" units improves results

• GAN Dissection

https://gandissect.csail.mit.edu

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

Mode Collapse

How do we know what a GAN cannot generate?

How to visualize the problem of mode collapse?

Bau, David, et al. "Seeing what a GAN cannot generate." Proceedings of the IEEE International Conference on Computer Vision. 2019.

Seeing what a GAN cannot generate
 Generated vs. Training object segmentation statistics

Seeing what a GAN cannot generate
 Generated vs. Training object segmentation statistics

(b) real images vs. reconstructions

Seeing what a GAN cannot generate

Method: Quantifying distribution-level mode collapse

Seeing what a GAN cannot generate
 Method: Quantifying instance-level mode collapse

$$G = G_f(g_n(\cdots((g_1(\mathbf{z}))))$$

$$\mathcal{L}_{L} \equiv \mathbb{E}_{\mathbf{z}}[||\mathbf{r}_{i-1} - e(g_{i}(\mathbf{r}_{i-1}))||_{1}]$$

$$\mathcal{L}_{R} \equiv \mathbb{E}_{\mathbf{z}}[||\mathbf{r}_{i} - g_{i}(e(\mathbf{r}_{i}))||_{1}]$$

$$e_{i} = \underset{e}{\operatorname{arg min}} \quad \mathcal{L}_{L} + \lambda_{R}\mathcal{L}_{R},$$

$$E^{*} = e_{1}(e_{2}(\cdots(e_{n}(e_{f}(\mathbf{x})))))$$

$$\mathbf{x'} = G_f(\mathbf{r}^*),$$
 where $\mathbf{r}^* = \operatorname*{arg\,min}_{\mathbf{r}} \ell(G_f(\mathbf{r}), \mathbf{x})$

 Seeing what a GAN cannot generate Results

 Seeing what a GAN cannot generate Results

Seeing what a GAN cannot generate

Results photograph generated photograph generated photograph generated photograph generated LSUN outdoor church data Unrelated images outdoor

Summary

- Internal Distribution Modelling
 - InGAN
 - SinGAN
- What is in the Frequency Domain
 - CNN-generated images
 - Learning in the frequency domain
- What It Learns
 - GAN Dissection
 - Mode Collapse

Thanks