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Challenge: Learning Large Encoder

Previous Lecture: Large Image This Lecture: Large Encoder

Scalable Reversable

Z He{ X

We use images for demonstration

Unsupervised Representation Learning!
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Challenge: Learning Large Encoder

* VAE vs. GAN

* A Naive Approach

* Another Naive Approach
e Without Encoder

* Recap: BiGAN

* Adversarial Autoencoder
 VAE+GAN

* a-GAN

e BigBiGAN

* Multi-code GAN prior

* Implicit vs. Explicit Encoder
* Summary
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* VAE vs. GAN
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VAE vs. GAN

Vanilla GAN

x>z [KB] 75X

VAE has an Encoder that can map xto z
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VAE vs. GAN

V4 X

Vanilla GAN [ Latent Space J { Image Space J

VAE [ Latent Space }0[ Image Space 1

e VAE = Generator + Encoder

* Vanilla GAN = Generator + Discriminator

e Better GAN = Generator + Discriminator + Encoder
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 Without Encoder:
Input vector z,, G(1—a)*xz,+a *zp), a€(0,1] Input vector z,,
> G(zp)
Interpolation |

 With Encoder:

Input image x, Input image x,,

0, 1]

Rk
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* A Naive Approach
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A Naive Approach

GD-;Z-Z

Step 1: Pre-trained G Step 2: Fix G and Train E
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A Naive Approach

* Application: Unsupervised/Unpaired Image-to-Image Translation

5

real

fake

Given an ACGAN Learning the Encoder in a Brute Force Way

Z : shared latent representation across two domains

10
Unsupervised Image-to-Image Translation with Generative Adversarial Networks. H. Dong, P. Neekhara et al. arXiv 2017.
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A Naive Approach

* Application: Unsupervised/Unpaired Image-to-Image Translation

input output

n |
a
K

input input output

2

Shared Features Across Domain

Gender transformation Face swapping Image inpainting

11
Unsupervised Image-to-Image Translation with Generative Adversarial Networks. H. Dong, P. Neekhara et al. arXiv 2017.
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A Naive Approach

* Application: Unsupervised/Unpaired Image-to-Image Translation

Only Work Well for Simple Image with Small Size

Shared Features Across Domain

12
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A Naive Approach

e Limitation: Encoder never see real data sample !

E never see real X
X #X

13
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A Naive Approach

* Limitation: Encoder never see real data sample

and the synthesized data distribution !=
* Mode Collapse

(2 Y X
AR

X .
< {7 % Gcanonlysynthesis some part of the dataset x

X
and can fool D
A X

- e/

N N

(4 (Y o ’:i"}i ? ‘i ?“i
; i | -i—-@«@—-@—-i—-iaiﬂ@

{7 {7% Gecaneven only synthesis one data
and can fool D Examples of GAN collapse

N N
= X

- \x/ y
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A Naive Approach

* Only work well if only if the fake distribution == the real distribution,

but it is impossible in practice.
Fixed

GD-;Z-Z

Step 1: Pre-trained G Step 2: Fix G and Train E

15
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* Another Naive Approach

16
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Another Naive Approach

* Could E see real data sample?

GD-;Z-Z

Step 1: Pre-trained G Step 2: Fix G and Train E

17
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Another Naive Approach

* Could E see real data sample?

E can see real data sample now Fixed

GD-;Z-Z

Step 1: Pre-trained G Step 2: Fix G and Train E

18
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Another Naive Approach

* Problem:
Difficult to converge (even using a super-deep E)

* Reason:
Model Collapse: G cannot synthesize the input image,
so the loss cannot be reduced

The quality of synthesized images != real images,
so the loss cannot be reduced
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Another Naive Approach

* Only work well if only if the fake distribution == the real distribution,

but it is impossible in practice.

E can see real data sample now,
but G cannot always generate the input samples

Fixed

GD-;Z-Z

Step 1: Pre-trained G Step 2: Fix G and Train E

20
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e Without Encoder

21
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Without Encoder

* Optimization-based method: find the optimal z iteratively

Fixed

_z e X po M 7 )

Step 1: Pre-trained G Step 2: Fix G and X, Train Z

22
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Without Encoder

 Limitation?

SLOW

A naive way to speed up this method is to:
use one of the previous naive way to pretrain an encoder, then

step 1: use the encoder to initialize the latent code z when given an image x
step 2: find the optimal z iteratively

23
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* Recap: BiGAN

24
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Recap: Bidirectional GAN

x.2}—{X,23

_ ' Consider a BIGAN discriminator input pair (x, z). Due to the sampling procedure, (X, z)
BiGAN must satisfy at least one of the following two properties:

(a)xEQXAE(x):z (b)zEQz/\G(z):x

If only one of these properties is satisfied, a perfect discriminator can infer the source of (x, z) with
certainty: if only (a) is satisfied, (x, z) must be an encoder pair (x, £(x)) and D}, (x,2z) = 1; if
only (b) is satisfied, (x, z) must be a generator pair (G(z),z) and D}, (x,z) = 0.

Therefore, in order to fool a perfect discriminator at (x,z) (so that 0 < D} ,(x,z) < 1), E and
G must satisfy both (a) and (b). In this case, we can substitute the equality F/(x) = z required
by (a) into the equality G(z) = x required by (b), and vice versa, giving the inversion properties
x = G(E(x)) and z = E(G(z)).

BiGAN: Adversarial Feature Learning. Jeff Donahue, Philipp Krahenbuhl, Trevor Darrell. ICLR 2017. 25
ALl: Adversarially Learned Inference. Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, Aaron Courville. ICLR 2017.



P »
NELFES

PEKING UNIVERSITY

 Adversarial Autoencoder

26
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Adversarial Autoencoder

7} -3

AAE: Adversarial Autoencoder. Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly. ICLR 2016. o
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* VAE+GAN

28
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VAE+GAN

>/

|, Creal) £} -

D
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VAE+GAN

Discriminator as the feature extractor

29
VAE-GAN: Autoencoding Beyond Pixels Using a Learned Similarity Metric. Andres Boesen Lindbo Larsen, Soren Kaae Sonderby, Hugo Larochelle, Ole Winther. ICML 2016
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a-GAN
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* Training the G and E in Autoencoder way can force the G to be able to generate all X, avoiding GAN collapse

o-GAN: Variational Approaches for Auto-Encoding Generative Adversarial Networks. Mihaela Rosca, Balaji Lakshminarayanan, David Warde- 31
Farley, Shakir Mohamed. arXiv preprint arXiv:1706.04987.
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* BigBiGAN

32
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BigBiGAN

* Work on large images
 Combine BigGAN and BiGAN

‘y '. n :. = - 3 A F
(a) 128128 (b) 256x256 » 512><1

Figure 4: Samples from our BigGAN model with truncation threshold 0.5 (a-c) and an example of
class leakage in a partially trained model (d).

BiGAN
Bidirectional GAN

BigBiGAN: Large Scale Adversarial Representation Learning. Jeff Donahue, Karen Simonyan. NIPS 2019. .
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BigBiGAN
* Limitation

image size of 512x512x3 = Latent code with size of 1x512

512

= 0. 1
512%x512%3 0.00065

Difficult to be lossless ....

BigBiGAN: Large Scale Adversarial Representation Learning. Jeff Donahue, Karen Simonyan. NIPS 2019. o
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BigBiGAN

 Limitation

Figure 2: Selected reconstructions from an unsupervised BigBiGAN model (Section 3.3). Top row
images are real data x ~ Px; bottom row images are generated reconstructions of the above image x
computed by G(£(x)). Unlike most explicit reconstruction costs (e.g., pixel-wise), the reconstruction
cost implicitly minimized by a (Big)BiGAN [4, 7] tends to emphasize more semantic, high-level
details. Additional reconstructions are presented in Appendix B.

BigBiGAN: Large Scale Adversarial Representation Learning. Jeff Donahue, Karen Simonyan. NIPS 2019. .
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* Limitation
Figure 7: 128 x 128 reconstructions from an unsupervised BigBiGAN model, trained using the
lighter augmentation from [24] with generation results reported in Table 3. The top rows of each pair
are real data x ~ Py, and bottom rows are generated reconstructions computed by G(€(x)).
36

BigBiGAN: Large Scale Adversarial Representation Learning. Jeff Donahue, Karen Simonyan. NIPS 2019.



FEI 5 g
N It 7 F 2

PEKING UNIVERSITY

BigBiGAN

* Main Goal: Large Scale Adversarial Representation Learning

Top-1/Top-5 Acc. (%)
Metric | k=1 =5 k=25 k = 50

D, 38.09/- 41.28/58.56 43.32/65.12 42.73/66.22
D, 35.68/- 38.61/55.59 40.65/62.23 40.15/63.42

Table 6: Accuracy of k nearest neighbors classifiers in BigBiGAN feature space on the ImageNet
validation set. We report results under the normalized ¢; distance D, as well as the normalized /5
(cosine) distance Ds.

BigBiGAN: Large Scale Adversarial Representation Learning. Jeff Donahue, Karen Simonyan. NIPS 2019. Y



BigBiGAN

Figure 12: Nearest neighbors in BigBiGAN & feature space, from our best performing model (RevNet
x4, T € LR). In each row, the first (left) column is a query image, and the remaining columns are its
three nearest neighbors from the training set (the leftmost being the nearest, next being the second
nearest, etc.). The query images above are the first 24 images in the ImageNet validation set.

BigBiGAN: Large Scale Adversarial Representation Learning. Jeff Donahue, Karen Simonyan. NIPS 2019.
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38
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BigBiGAN
* Summary
* Asingle latent code cannot represent a high-resolution image
* Other information inside the generator

* High compression rate

* Next: any solution?

BigBiGAN: Large Scale Adversarial Representation Learning. Jeff Donahue, Karen Simonyan. NIPS 2019.
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* Multi-code GAN prior

40
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Multi-code GAN prior

* An Optimization-based Method

AL
2] ==
\ r \ MSE + Perceptual Loss
(0 e
Gl o~

Z; == } i {

. N

) Z Fﬁf) © ay,
ZN = J l n=1 Inversion Result Target Image

F%) an

A single latent code is not enough to recover all detailed information.
We can use multiple latent codes to recover different feature maps.

Image Processing Using Multi-Code GAN Prior. Gu, Jinjin. Shen, Yujun. Zhou, Bolei. arXiv 2019. .
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Multi-code GAN prior

e Reconstruction

Target Image (a) Optimization (b) Encoder (c) Encoder + Optimization (d) Ours

.
j‘ sl
L]

V’ .

PGGAN PGGAN
Church Bedroom

PGGAN
CelebA-HQ

Image Processing Using Multi-Code GAN Prior. Gu, Jinjin. Shen, Yujun. Zhou, Bolei. arXiv 2019. .
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Multi-code GAN prior

* |npainting

Corrupted Image (a) Single Latent Code  (b) Optimizing Feature Maps (c) DIP (d) Ours Ground Truth
o ;

Image Processing Using Multi-Code GAN Prior. Gu, Jinjin. Shen, Yujun. Zhou, Bolei. arXiv 2019. -
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Multi-code GAN prior

* More

(d) Image Denoising (e) Image Inpainting (f) Semantic Manipulation

Image Processing Using Multi-Code GAN Prior. Gu, Jinjin. Shen, Yujun. Zhou, Bolei. arXiv 2019. "
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Multi-code GAN prior

* Discussion
 Why it works?

 Limitations?

Image Processing Using Multi-Code GAN Prior. Gu, Jinjin. Shen, Yujun. Zhou, Bolei. arXiv 2019. ©
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* Implicit vs. Explicit Encoder

46
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Implicit vs. Explicit Encoder

1

\ /

En G,

H

UNIT CycleGAN
Learn the Encoder Explicitly Learn the Encoder Implicitly
Unsupervised image-to-image translation networks. M.Y. Liu, T. Breuel, J. Kautz. NIPS. 2017 .

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. J. Zhu, T. Park et al. ICCV 2017.



Implicit vs. Explicit Encoder

Input Husky

Liu et al.
Learn the Encoder Explicitly

ez )%

horse — zebra

CycleGAN
Learn the Encoder Implicitly

Unsupervised image-to-image translation networks. M.Y. Liu, T. Breuel, J. Kautz. NIPS. 2017
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. J. Zhu, T. Park et al. ICCV 2017



ez ¥

PEKING UNIVERSITY

Implicit vs. Explicit Encoder

Input GTAS CG Output image with German street view style

Unsupervised image-to-image translation networks. M.Y. Liu, T. Breuel, J. Kautz. NIPS. 2017
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. J. Zhu, T. Park et al. ICCV 2017



Implicit vs. Explicit Encoder

e Simple normal distribution is difficult to model complex images

* 3D tensors can contain more spatial information than vectors

* Many applications do not need interpolation

GAZB

><)

Image inpainting
Image super resolution
Image-to-image translation
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* Summary

51
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Summary

* GAN: G+D>G+D+E

* Learning E from real data is important

* GAN mode collapse

* BiGAN, AAE, VAE+GAN, a-GAN, BigBiGAN

* Autoencoder can help to avoid mode collapse

e Learning E implicitly

 The E can be extended to text and any other data type
e Still on the way ...
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Thanks

53



