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Challenge: High-dimensional data generation

Progressive Growing of GANs for Improved Quality, Stability, and Variation. T. Karras, T. Aila, et al. ICLR. 2018.

Past
64x64

Now
1K, 2K

Next
Retina Screen

We use images for demonstration



• Challenges:
• Formulation
• For CG-based Methods
• For Deep Methods

• Approaches:
• Progressive-GAN
• Style-GAN
• SAGAN
• Big-GAN
• VQ-VAE VQ-VAE-2 and Limitation

• Discussion: 
• Ideal Generative Models
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Formulation

Features
(e.g., the prior distribution, predefined 

features)

Large Scale(e.g. Resolution)
(e.g., image, video, …)

(Prior) Normal Distribution
z = 100 values

𝑝(𝑥) = 𝑝 𝑥 𝑧 𝑝(𝑧)
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Formulation

Features
(e.g., the prior distribution, predefined 

features)

!𝑿

X

real

fake
Z

C
c=1

c=2

𝑝(𝑥|𝑧, 𝑐)

Predefined features

Large Scale(e.g. Resolution)
(e.g., image, video, …)

• Shape deformation! (Locally & Globally)
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CG-based Methods

• Fully CG-based
• Hybrids

GTA 5

• Pros:
• Reasonable Structure
• As “structure” is relatively 

more well-defined.

• Cons:
• Distorted Details
• We cannot well-define 

“What is a human face” or 
“What is real wall texture”.
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CG-based Methods

• Fully CG-based
• Hybrids

• Computer Graphics + GAN

Peng, X., Usman, B et al. (2018). VisDA: A synthetic-to-real benchmark for visual domain adaptation. CVPR Workshops
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CG-based Methods

• Fully CG-based
• Hybrids

• Computer Graphics + GAN

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. J. Zhu, T. Park et al. ICCV 2017.
Unsupervised image-to-image translation networks. M.Y. Liu, T. Breuel, J. Kautz. NIPS. 2017
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CG-based Methods

• Fully CG-based
• Hybrids

• Limitation

• Need prior knowledge
• Intensive Engineering…

• Limited Generalization
• Artificially designed generation rule can only capture limited latent 

structure of domain

• Improvement need more prior …
• Anyway, automatically learning prior knowledge is necessary.
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Deep Methods

• As resolution grows, high-level information contained in same image grows much 
slower than low-level features

• As shown on the right From 50x50 -> 100x100
• “High-level” information grows much slower 
• “low-level” information keeps growing
• Intensively modeling of details

• Note that if we want to keep “R”’s structure, 
then we have to keep all pixels’ relative position 
fixed and average distance between each pixel-
pair is proportional to resolution.
• Long-range dependency problem
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Progressive GAN

• Recap: DCGAN

• Difficult to scale:

• Unstable training
• Computer memory constraints
• High resolution images make the 

discriminator easier to discriminate 
the fake and real images, amplifying 
the gradient problem.

64x64 work !

1024x1024 fail ……
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Progressive GAN

• From Coarse to Fine : 4x4 à 8x8 à 16x16 à 32x32 …. à1024x1024

Uality, Q., Tability, S., Ariation, V., & Karras, T. 2018 ICLR. Progressive Growing of GANs for Improved Quality, Stability, and Variation



17

Progressive GAN

• From Coarse to Fine : 4x4 à 8x8 à 16x16 à 32x32 …. à1024x1024

Uality, Q., Tability, S., Ariation, V., & Karras, T. 2018 ICLR. Progressive Growing of GANs for Improved Quality, Stability, and Variation

nearest neighbor or average
“fade in” weight increase  from 0 to 1(stabilized training)
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Progressive GAN

• From Coarse to Fine with Condition

Uality, Q., Tability, S., Ariation, V., & Karras, T. 2018 ICLR. Progressive Growing of GANs for Improved Quality, Stability, and Variation

Bottle

Bridge

Cat

Chair
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Progressive GAN à StackGAN

• From Coarse to Fine: Text-to-Image Synthesis

Zhang, H., Xu, T, te al. (2017) ICCV. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. 
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Progressive GAN à StackGAN

• From Coarse to Fine: Text-to-Image Synthesis 

Zhang, H., Xu, T, te al. (2017) ICCV. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. 

!X
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fake
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Step 1 Step 2
%𝒕 : mismatched text

t : matching text

64x64 256x256
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Progressive GAN

• Question: Can Computer Graphic Generates This?

Uality, Q., Tability, S., Ariation, V., & Karras, T. 2018 ICLR. Progressive Growing of GANs for Improved Quality, Stability, and Variation
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StyleGAN

• Insert Feature as Style Transfer

A Style-Based Generator Architecture for Generative Adversarial Networks. Ero Karras, Samuli Laine, Timo Aila. arXiv 2018

where each feature map xi is normalized 
separately, and then scaled and biased using the 
corresponding scalar components from style y.

prior distribution

learned distribution

Adaptative Normalization:
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StyleGAN

• Hierarchical Latent Code

A Style-Based Generator Architecture for Generative Adversarial Networks. Ero Karras, Samuli Laine, Timo Aila. arXiv 2018

Coarse style from source B

Middle style from source B

Fine style from source B

Pose, hair style, face shape, 
eyeglasses

Eye open/close, facial feature

Color, microstructure
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StyleGAN

• Hierarchical Noise

A Style-Based Generator Architecture for Generative Adversarial Networks. Ero Karras, Samuli Laine, Timo Aila. arXiv 2018

(a) Noise is applied to all layers.

(b) No noise. look “smooth”

(c) Noise in fine layers only (642 – 10242). fine details

(b) Noise in coarse layers only (42 – 322). coarse details
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SAGAN

• Recap: Shape Deformation When Directly Scaling Up DCGAN
• And recall that deep model’s challenges lie on 

• Intensively modeling details
• Long range dependency

• CNN is a strong inductive bias to model natural details, but fails when 
modeling long range dependency. 
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SAGAN

• Non-local layer vs Local layer
• CNN is “local layer”, a neuron only observes part elements of the 

previous layer.

• Which limits the network’s ability to capture global dependencies.
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SAGAN

• SAGAN:  Introduce attention layer into DCGAN backbone
• Attention: have become an integral part of models that must 

capture global dependencies 
• Illustration of attention:

• 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 = ∑'()* 𝑣𝑎𝑙𝑢𝑒' ∗ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡'
• 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡' =

+!"#$%°'(#)$

∑*+,
- +!"#$*°'(#)$



SAGAN

• SAGAN:  Introduce attention layer into DCGAN backbone

•



SAGAN

• SAGAN:  Introduce attention layer into DCGAN backbone
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Big-GAN
• Big-GAN:  Some novel tricks to scale up SAGAN + SAGAN backbone

• 1. SAGAN -> conditional-SAGAN + skip-z
• 2. 64x channel -> 96x channel
• 3. 256x batch size -> 2048x batch size

• Ablation:
• After applying 1:

• Performance + 4%
• Training speed + 18%

• After applying 2:
• IS + 21%

• After applying 3:
• IS + 50%
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Big-GAN

• Big-GAN:  Some novel tricks to scale up SAGAN + SAGAN backbone
• 4. truncation trick

• Using different latent distribution for sampling than used in 
training

• 5. orthogonal regularization
• Enforce Generator to be more amenable to truncation 
• Orthogonal regularization can make G smoother
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Big-GAN

• Big-GAN:  Some novel tricks to scale up SAGAN + SAGAN backbone
• Samples generated by BigGAN at 256x resolution on ImageNet
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VQ-VAE

• Straight-though Estimator

VQ-VAE: Neural discrete representation learning. Van Den Oord, Aaron. Vinyals, Oriol. Kavukcuoglu, Koray. NeurIPS 2017
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VQ-VAE

• Loss

VQ-VAE: Neural discrete representation learning. Van Den Oord, Aaron. Vinyals, Oriol. Kavukcuoglu, Koray. NeurIPS 2017

Image reconstruction loss

sg : the stop gradient operator that
e  : quantized vector
ze(x):  vector from the encoder output

Make the quantized vector as close as the original vector
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VQ-VAE

• Results

VQ-VAE: Neural discrete representation learning. Van Den Oord, Aaron. Vinyals, Oriol. Kavukcuoglu, Koray. NeurIPS 2017

Input Reconstruction
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VQ-VAE

• Results – Random Sampling

VQ-VAE: Neural discrete representation learning. Van Den Oord, Aaron. Vinyals, Oriol. Kavukcuoglu, Koray. NeurIPS 2017
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VQ-VAE

• Results – More Data Modalities

VQ-VAE: Neural discrete representation learning. Van Den Oord, Aaron. Vinyals, Oriol. Kavukcuoglu, Koray. NeurIPS 2017
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VQ-VAE-2

• VQVAE-2: Scale single-level VQ-VAE to hierarchical VQ-VAE
• Intuition: Different level’s features encode different level’s information

Generating Diverse High-Fidelity Images with VQ-VAE-2. Razavi, Ali Oord, Aaron van den Vinyals, Oriol. arXiv 2019.
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VQ-VAE-2

• An intuitive interpretation of different level’s information

Generating Diverse High-Fidelity Images with VQ-VAE-2. Razavi, Ali Oord, Aaron van den Vinyals, Oriol. arXiv 2019.

Low-level features == details
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VQ-VAE-2

Generating Diverse High-Fidelity Images with VQ-VAE-2. Razavi, Ali Oord, Aaron van den Vinyals, Oriol. arXiv 2019.

VQ-VAE-2 BigGAN
(more diverse)
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VQ-VAE-2 Limitation

• The latent representation is not a prior distribution, an additional deep model is 
required to model the latent distribution for sampling, it is not a “real encoding”

• For VQ-VAE-2, the hierarchical representations are not independent, we cannot 
change the hierarchical feature individually.

• For both VQ-VAE and VQ-VAE-2, the spatial representations (the features within a 
same latent map) are not independent, we cannot change the spatial feature 
individually.

VQ-VAE: Neural discrete representation learning. Van Den Oord, Aaron Vinyals, Oriol Kavukcuoglu, Koray. NIPS 2017.
Generating Diverse High-Fidelity Images with VQ-VAE-2. Razavi, Ali Oord, Aaron van den Vinyals, Oriol. arXiv 2019.



• Challenges:
• Formulation
• For CG-based Methods
• For Deep Methods

• Approaches:
• Progressive-GAN
• Style-GAN
• SAGAN
• Big-GAN
• VQ-VAE VQ-VAE-2 and Limitation

• Discussion: 
• Ideal Generative Models

46

Challenge: High-dimensional data generation



47

Discussion: Ideal Model

• High-dimensional data generation
• Data encoding, implicit inverse x->z

• More
• Interpolation in latent space
• Multi-modality
• Mode collapse
• Fast training
• Disentanglement
• Hierarchical representation with independent property
• Spatial representation with independent property

Next Lecture



Thanks
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