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Why it matters

* The typical application of graph neural network is representation learning,
e.g. mining hidden information from social networks, knowledge graphs
with unsupervised node embedding.

* Graph generating is infeasible and not very useful, for graphs such as social networks,
which may contain billions of nodes

* A Comprehensive Survey on Graph Neural Networks, 2019

* “The majority of graph autoencoders for graph generation are designed to solve the
(rjnolecular”graph generation problem, which has a high practical value in drug
iscovery.

* Furthermore, graph generating model can be used for augmenting graph
datasets.
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Various graphs

* Graphs can be interpreted in many ways. In another words, many data
modality can be represented as graph:s.

* Notice how the abstract concepts of node, edge, node label, edge
label, etc. are grounded in each case.
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Social Networks
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Citations

* Graph visualization of citations of
papers published on Nature

B siclog (57.28%)
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Medicine (9.11%)
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Geology (4.33%)
Computer Science (1.49%)
Mathematics (1.05%)
Economics (0.31%)
Engineering (0.31%)
Sociology (0.27%)

Materials Science (0. 23%)
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* A local view of the
tricarboxylic acid
cycle that is
fundamental to
respiration
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Various graphs

* Molecules

e will be discussed in details later

» especially small organic molecules, large molecules (proteins and DNAs) are
better modeled as sequences

* Knowledge Graphs

* Many computation problems
* Reducibility Among Combinatorial Problem, 1972

* many combinatorial problems (in particular, all NP complete problems) can be
converted to problems about graphs
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* Generating graphs as sequences
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Generating graphs as sequences

* There are many general ways to serialize molecules, e.g. SMILES
* notice that this method can be applied to general graphs with discrete labels

* Use brackets to indicate side chains, and numbers to identify rings

* Hydrogens are often omitted.



Generating graphs as sequences

* A linear molecule can be represented as a linear string.
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* Brackets to indicate side chains, such that trees can be represented.

CHg

CH;

H;C—CHy—N—CH;—CHjs

CHz

Q=0

H,C—CH OH

CHg
CH;

CH,

H,C=CH—CH—CH—CH,—CH,—CHj

CHz

CH,—CHs

CCN(CC)CC

CC(C)C(=0)0O

C=CC(CCC)C(C(C)C)CCC

Triethylamine

Isobutyric acid

3-propyl-4-isopropyl-1-heptene
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Generating graphs as sequences

e Use numbers to indicate rings (loops), two consecutive atoms with the
same number are connected.

CHy_ e C
H,C~  CH, " e " TN,

| | = | | = | >  C10Ceect
HQC\ CH2 C C C Cl
cHy” \\C”/ \C/’
* Molecule on the right: 1

C1CCC[N+]12CCCC2 or
C1CCC[N+]11CCCC1 N



.-‘."\‘s"'e- » g
ANEFEE,
759%

PEKING UNIVERSITY

Exercise

* Draw graph representation of SMILES, and notice their difference
* CCCCCC

C1CCCCC1

C1CC1C2CC2

C1CC2C1CC2

C12C3C4C1C2C34
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Generating graphs as sequences

* A sequence generating model can then be directly applied on
serialized graphs

* A graph can be serialized in different ways, although there are
standards for choosing the beginning point and choosing the main
chain to ensure a unique serialization for ease of comparison, the
specification is however, artificial, and sometimes impedes learning
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* Autoregressive graph generating



Autoregressive graph generating

* Learning deep generative models of graphs, 2018

* [teratively connects nodes and edges to the graph

 Particularly useful when a part of the target is known
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Add node (0)? Add edge? Add node (1)? Add edge? Pick node (0) to
(yes/no) (yes/no) (yes/no) (yes/no) add edge (0.1)
— © .. @ @ . @ @—_“——-_ g —_—
1 ® O
Generation steps
L Add edge? Add node (2)? Add edge? Pick node (0) to Add edge?
s/no yes (yes/no) add edge (0,2) (yes/no)
/.|.) ® (yes/no) 9 @ !
® @ @ ® ® >
2 @ @ @

Figure 1. Depiction of the steps taken during the generation process.



Autoregressive graph generating

Table 2. Molecule generation results. /N is the number of permu-
tations for each molecule the model is trained on. Typically the

* Limitations

number of different SMILES strings for each molecule < 100.

Arch Grammar  Ordering | N NLL Povalid %onovel
LSTM SMILES Fixed 1 21.48 93.59 81.27
LSTM SMILES Random < 100 19.99 93.48 83.95
LSTM Graph Fixed 1 22.06 85.16 80.14
LSTM Graph Random O(n!) 6325 91.44 91.26
Graph Graph Fixed 1 20.55 97.52 90.01
Graph Graph Random O(n!) 58.36 95.98 95.54

Table 3. Negative log-likelihood evaluation on small molecules

with no more than 6 nodes.

Arch Grammar ~ Ordering | N Fixed Best Marginal
LSTM  SMILES Fixed 1 17.28 1598 15.90
LSTM  SMILES Random < 100 1595 1576 15.67
LSTM Graph Fixed 1 16.79 1635 16.26
LSTM Graph Random O(n!) 20.57 18.90 15.96
Graph Graph Fixed 1 16.19  15.75 15.64
Graph Graph Random O(n!) 20.18 18.56 15.32
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* Still dependent on an artificial ordering, the ordering has more entropy than

the graph itself.
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* Global graph generating
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Global graph generating

* Motivation: to avoid arbitrary ordering imposed in serialized and
autoregressive graph generating

 GraphVAE: Towards generation of small graphs using variational
autoencoders. 2018

* For graphs of no more than k nodes, predict the edges as a kxk dense
matrix
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Global graph generating

* Similar to an image VAE, the adjacency matrix is encoded into a
posterior distribution of latent variable of fixed dimension d.

* The order of nodes doesn’t matter, when comparing output of the
decoder to the input, the graphs are compared up to isomorphism, e.g.

0 1 0 0 1 1
1 0 1)and{1 O 0 ]areconsidered equivalent.

0 1 0 1 0 0
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Limitation

* As the cost of avoiding arbitrary ordering, the problem of graph
matching is introduced, i.e., the output graph must be aligned with the
ground truth in order to compute the loss

* The graph isomorphism problem is not known to be solvable in
polynomial time nor to be NP-complete

* A practical second order matching algorithm has memory cost
of 0(k?*), which severely limits the scale of problems it can apply on
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To avoid the limitation:

* Without graph matching, global graph generating can be more
performant (up to 0(k?))

* Graph GAN, discriminator loss doesn’t need aligning a pair of graphs to
compute

* For graph VAEs, randomly shuffle the node order of input, and requires
the node order of the output being the same.
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Summary

* Introduction
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* Autoregressive graph generating
* Global graph generating



