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Why it matters

• The typical application of graph neural network is representation learning, 
e.g. mining hidden information from social networks, knowledge graphs 
with unsupervised node embedding.
• Graph generating is infeasible and not very useful, for graphs such as social networks, 

which may contain billions of nodes

• A Comprehensive Survey on Graph Neural Networks, 2019
• “The majority of graph autoencoders for graph generation are designed to solve the 

molecular graph generation problem, which has a high practical value in drug 
discovery.”

• Furthermore, graph generating model can be used for augmenting graph 
datasets.



Various graphs

• Graphs can be interpreted in many ways. In another words, many data 
modality can be represented as graphs.

• Notice how the abstract concepts of node, edge, node label, edge 
label, etc. are grounded in each case.



Social Networks



Citations

• Graph visualization of citations of 
papers published on Nature



Metabolic pathway

• A local view of the 
tricarboxylic acid 
cycle that is 
fundamental to 
respiration



Various graphs

• Molecules
• will be discussed in details later
• especially small organic molecules, large molecules (proteins and DNAs) are 

better modeled as sequences

• Knowledge Graphs

• Many computation problems
• Reducibility Among Combinatorial Problem, 1972
• many combinatorial problems (in particular, all NP complete problems) can be 

converted to problems about graphs



• Introduction
• Generating graphs as sequences
• Autoregressive graph generating
• Global graph generating



Generating graphs as sequences

• There are many general ways to serialize molecules, e.g. SMILES
• notice that this method can be applied to general graphs with discrete labels

• Use brackets to indicate side chains, and numbers to identify rings

• Hydrogens are often omitted.



Generating graphs as sequences

• A linear molecule can be represented as a linear string.
• Brackets to indicate side chains, such that trees can be represented.



Generating graphs as sequences

• Use numbers to indicate rings (loops), two consecutive atoms with the 
same number are connected.

• Molecule on the right:
C1CCC[N+]12CCCC2 or
C1CCC[N+]11CCCC1



Exercise

• Draw graph representation of SMILES, and notice their difference
• CCCCCC
• C1CCCCC1
• C1CC1C2CC2
• C1CC2C1CC2
• C12C3C4C1C2C34



Generating graphs as sequences

• A sequence generating model can then be directly applied on 
serialized graphs

• A graph can be serialized in different ways, although there are 
standards for choosing the beginning point and choosing the main 
chain to ensure a unique serialization for ease of comparison, the 
specification is however, artificial, and sometimes impedes learning



• Introduction
• Generating graphs as sequences
• Autoregressive graph generating
• Global graph generating



Autoregressive graph generating

• Learning deep generative models of graphs, 2018
• Iteratively connects nodes and edges to the graph
• Particularly useful when a part of the target is known



Autoregressive graph generating

• Limitations
• Still dependent on an artificial ordering, the ordering has more entropy than 

the graph itself.
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Global graph generating

• Motivation: to avoid arbitrary ordering imposed in serialized and
autoregressive graph generating

• GraphVAE: Towards generation of small graphs using variational
autoencoders. 2018

• For graphs of no more than k nodes, predict the edges as a kxk dense
matrix



Global graph generating

• Similar to an image VAE, the adjacency matrix is encoded into a 
posterior distribution of latent variable of fixed dimension d.

• The order of nodes doesn’t matter, when comparing output of the 
decoder to the input, the graphs are compared up to isomorphism, e.g.
0 1 0
1 0 1
0 1 0

and
0 1 1
1 0 0
1 0 0

are considered equivalent.



Limitation

• As the cost of avoiding arbitrary ordering, the problem of graph
matching is introduced, i.e., the output graph must be aligned with the
ground truth in order to compute the loss

• The graph isomorphism problem is not known to be solvable in
polynomial time nor to be NP-complete

• A practical second order matching algorithm has memory cost
of 𝑂 𝑘! , which severely limits the scale of problems it can apply on



To avoid the limitation:

• Without graph matching, global graph generating can be more 
performant (up to 𝑂(𝑘"))

• Graph GAN, discriminator loss doesn’t need aligning a pair of graphs to 
compute

• For graph VAEs, randomly shuffle the node order of input, and requires 
the node order of the output being the same.
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