

1

Energy-based Models

Hao Dong

Peking University

Content

- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference
- Some works
 - Deep Belief Network
 - EBGAN
 - BEGAN
 - MAGAN

- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference
- Some works
 - Deep Belief Network
 - EBGAN
 - BEGAN
 - MAGAN

Likelihood based learning

- Main concern: probability distributions p(x)
 - Non-negative: $p(x) \ge 0$
 - Sum-to-one: $\sum_{x} p(x) = 1 \text{ or } \int p(x) dx = 1$
- Non-negative is easy
 - f^2 , $\exp(f)$,..., where f is any neural network
- Sum-to-one is important
 - Increasing $p(x_{train})$ means x_{train} is more likely than others
 - Difficult to realise

Likelihood based learning

- Sum-to-one:
 - Some functions are easy to normalized analytically
 - Exponential: $f_{\lambda}(x) = e^{-\lambda x}$, $\int f_{\lambda}(x) dx = \frac{1}{\lambda}$
 - Gaussian: $f(x) = e^{\frac{(x-\mu)^2}{2\sigma^2}}$, $\int f(x)dx = \sqrt{2\pi\sigma^2}$
 - Some models can be obtained by combining these functions
 - Autoregressive: products of normalized objects

•
$$\iint_{xy} p_{\theta}(x) p_{\theta'(x)}(y) \, dx \, dy = 1$$

- Latent variables: Mixtures of normalized objects
 - $\int \alpha p_{\theta}(x) + (1-\alpha)p_{\theta'}(x)dx = 1$
- But other functions are difficult to compute analytically

Content

- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference
- Some works
 - Deep Belief Network
 - EBGAN
 - BEGAN
 - MAGAN

Energy based model

•
$$p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{\int \exp(-E_{\theta}(x))dx} = \frac{\exp(-E_{\theta}(x))}{Z(\theta)}$$

- $E_{\theta}(x)$ is called energy function
- $Z(\theta) = \int \exp(-E_{\theta}(x)) dx$ is called partition function
- Gibbs/Boltzmann Distribution
- Why this format?
 - Exponential and log are the natural scale
 - Pretty much functions can be rewritten in this format
 - In accordance with statistical physics
 - MCMC + Langevin equation

Energy versus Probabilistic

•
$$p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{\int \exp(-E_{\theta}(x))dx} = \frac{\exp(-E_{\theta}(x))}{Z(\theta)}$$

- Why not probabilistic approaches?
 - Partition function problem
 - High probability for good answers
 - Low probability for bad answers
 - Too many bad answers!

Energy-based model

- Pros:
 - Flexibility: use pretty much functions as energy functions
 - A unified framework for all these probabilistic and non-probabilistic approaches
 - Normalization is not required sometimes
- Cons:
 - Sampling from p(x) is difficult
 - Learning process is hard
 - Features are not learned (but can add latent variables)
 - Energies are uncalibrated

Energy-based model

•
$$p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{\int \exp(-E_{\theta}(x))dx} = \frac{\exp(-E_{\theta}(x))}{Z(\theta)}$$

- Curse of dimensionality
 - Computing $Z(\theta)$ numerically (when there's no analytic solution) scales exponentially in the number of dimensions of x.
 - Some tasks do not require knowing $Z(\theta)$

Energy-based model

•
$$p_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{\int \exp(-E_{\theta}(x))dx} = \frac{\exp(-E_{\theta}(x))}{Z(\theta)}$$

- Given x, x', evaluating $p_{\theta}(x)$, $p_{\theta}(x')$ is hard because of Z
- However, their ratio is easy to obtain

•
$$\frac{p_{\theta}(x)}{p_{\theta}(x')} = \exp(f_{\theta}(x) - f_{\theta}(x'))$$

What Questions can a model answer?

- 1. Classification & Decision Making:
 - Which value of Y is most compatible with X?
 - Application: Robot navigation, ...
 - Training: give the lowest energy to the correct answer
- 2. Ranking:
 - Is Y1 or Y2 more compatible with X?
 - Applications: Data-mining, ...
 - Training: produce energies that rank the answers correctly

What Questions can a model answer?

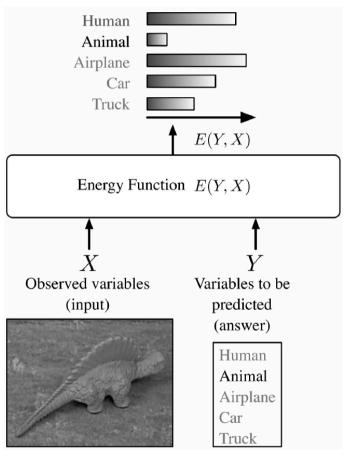
- 3. Detection:
 - Is this value of Y compatible with X?
 - Application: face detection, ...
 - Training: energies that increase as the image looks less like a face
- 4. Conditional Density Estimation:
 - What is the conditional distribution P(Y|X)?
 - Applications: decision-making system, ...
 - Training: differences of energies must be just so.

What Questions can a model answer?

- 5. Generative models:
 - What is the generative results Y of X?
 - Application: denoising, completion, generation, ...
 - Training: lower energies to better answer

Energy-based model for decision-making

- Model:
 - measures the compatibility between an observed variable X and a variable to be predicted Y through an energy function E(Y, X)
- Inference:
 - Search for Y that minimize the energy within a set y
 - Low cardinality: exhaustive search

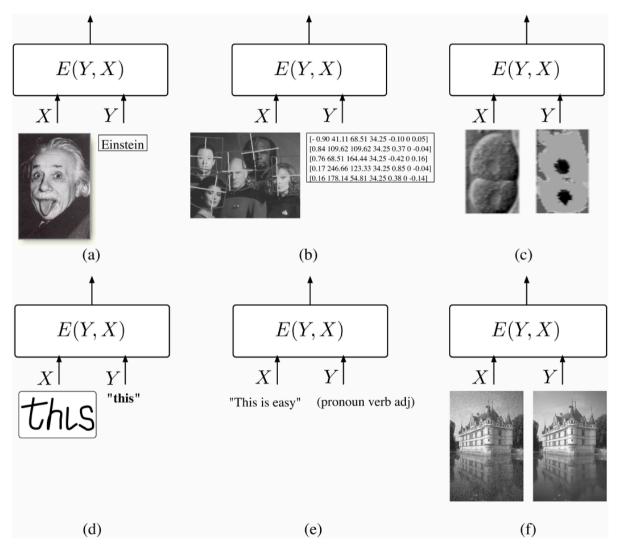


Energy-based model for decision-making

• Inference:

...

- Search for Y that minimize the energy within a set
 y
- High cardinality: min-sum, Viterbi,



Content

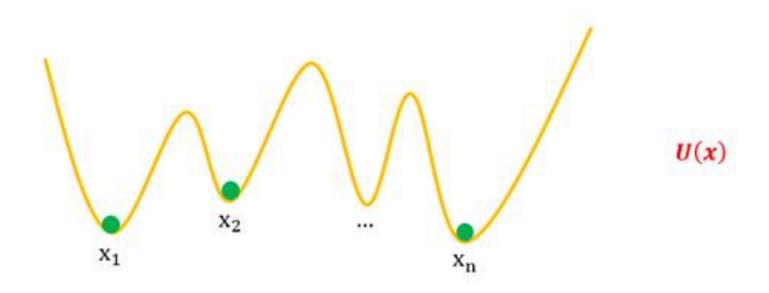
- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference
- Some works
 - Deep Belief Network
 - EBGAN
 - BEGAN
 - MAGAN

Training Intuition

- A random weight at first
 - The energy is a line

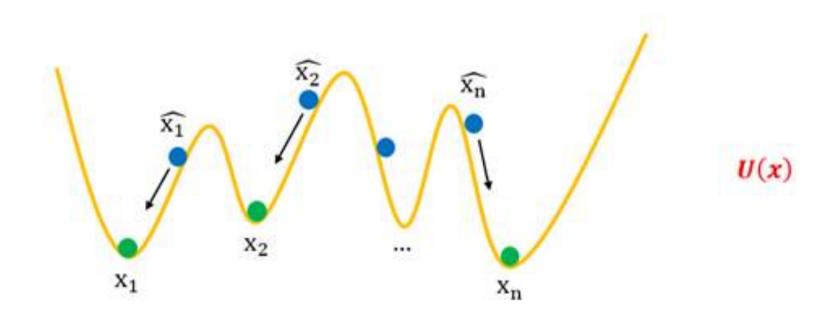
Training Intuition

- Real samples should be the valley
- Fake samples should be high (if exist)



Inference Intuition

• Samples will slide to the valley

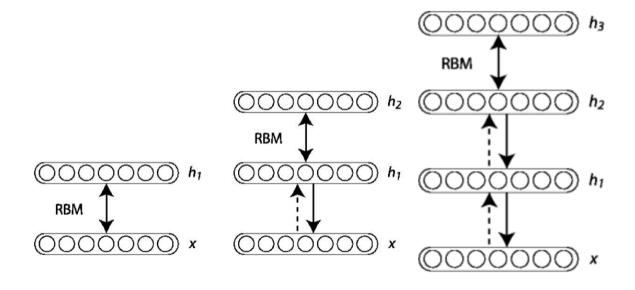


Content

- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference
- Some works
 - Deep Belief Network
 - EBGAN
 - BEGAN
 - MAGAN

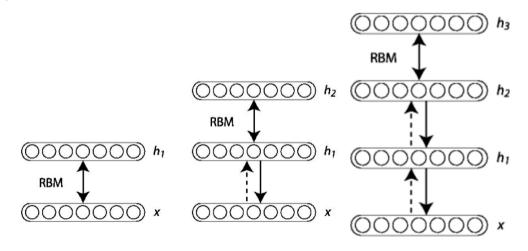
Deep Belief Network

- Problem of multi-layer neural network
 - The gradients may be too large or small
- What if the initial value is close to the optimal value?
- Deep Belief Network proposed by Hinton in 2006



Deep Belief Network

- Training Process:
 - View x and h1 as a RBM1 and train the weights
 - Fix the weights for RBM1, and train RBM2 (visible units: h1, hidden units: h2)
 - .
 - For the last layer, output what we want, calculate the difference and update weights

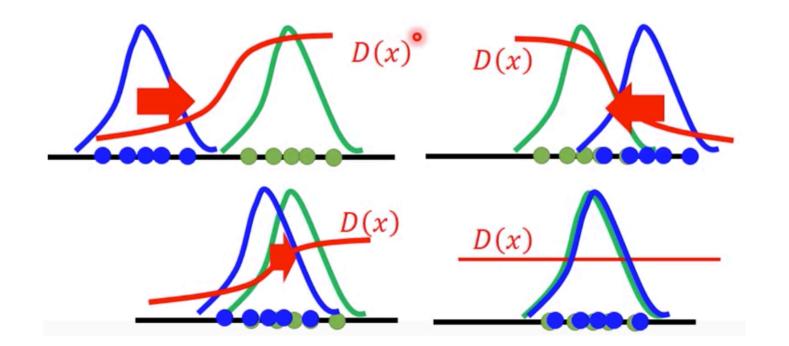


Content

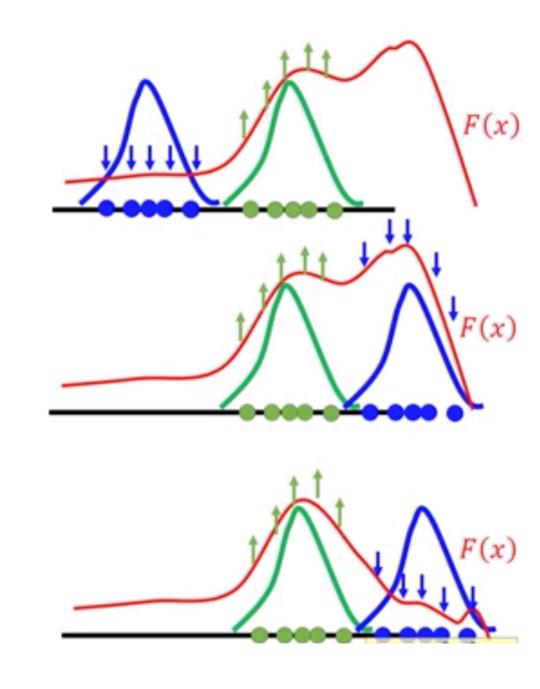
- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference
- Some works
 - Deep Belief Network
 - EBGAN
 - BEGAN
 - MAGAN

- Recap: GAN
 - Discriminator leads the generator

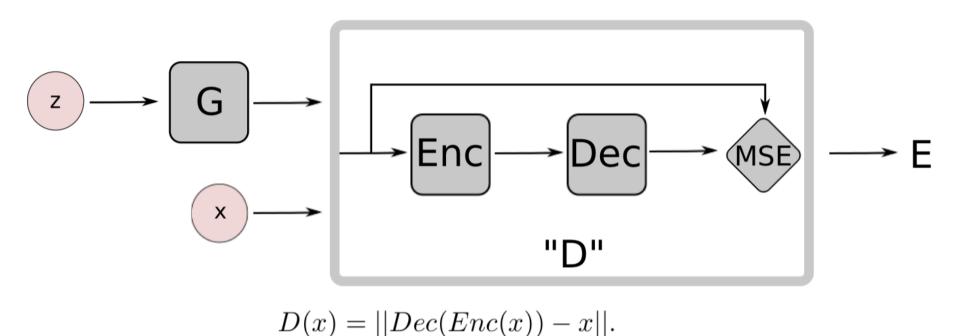
- Discriminator
- Data (target) distribution
- Generated distribution



- Recap:
 - We want the energy of positive examples to be low
 - The energy of negative examples to be high
 - But it's difficult to update for all negative examples
- Generator is an intelligent way to find the negative examples
- F is the Discriminator



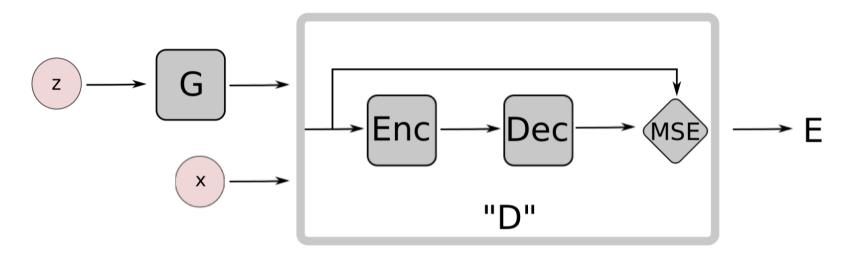
- View the discriminator as an energy function
- Auto-encoder as discriminator
- Loss function with margin for discriminator training
- Results:
 - Able to generate high-quality 256*256 images



• Real examples: $D(x) \rightarrow 0$

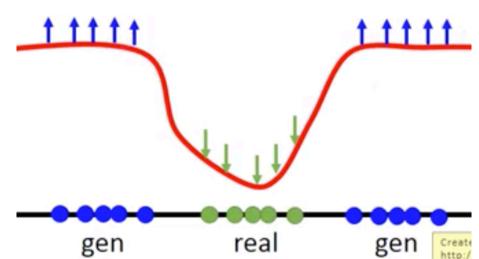
• Fake example: D(x) should be large

Training Process



- Sample real example x
- Sample code z for prior distribution
- Update discriminator D to minimize
 - $L_D(x,z) = D(x) + \max(0, m D(G(z)))$
- Sample code z from prior distribution
- Update generator G to minimize
 - $L_G(z) = D(G(z))$

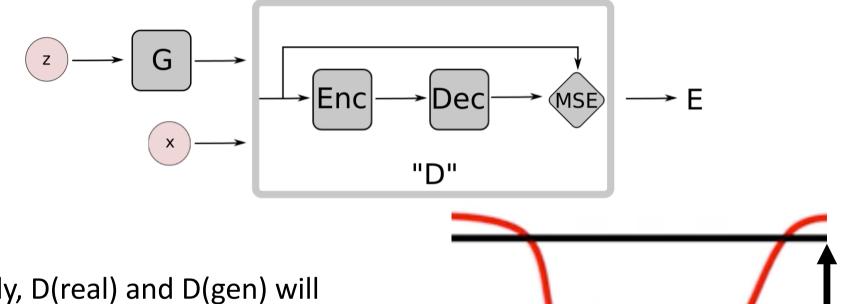
- Why $L_D(x, z) = D(x) + \max(0, m D(G(z)))$
- But not $L_D(x, z) = D(x) D(G(z))$?
- D(fake) can be infinite large
- So D will not focus on real example



m

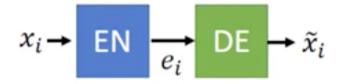
real = gen

Energy-based GAN (EBGAN)



• Finally, D(real) and D(gen) will be $\gamma \in (0, m)$

- Pulling-away term for training generator
 - For diverse outputs
 - Given a batch outputs of generator S = {x₁, ..., x_N}
 - $f_{PT}(S) = \sum_{i,j,i\neq j} \cos(e_i, e_j)$
- Better way to learn auto-encoder
 - If only minimize the recon error of real images: lead to identity function
 - Giving large reconstruction error for fake images regularized auto-encoder



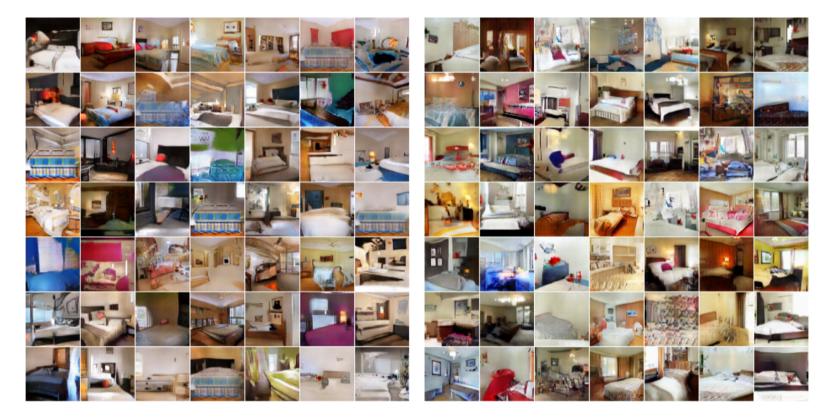


Figure 5: Generation from the LSUN bedroom dataset. Left(a): DCGAN generation. Right(b): EBGAN-PT generation.

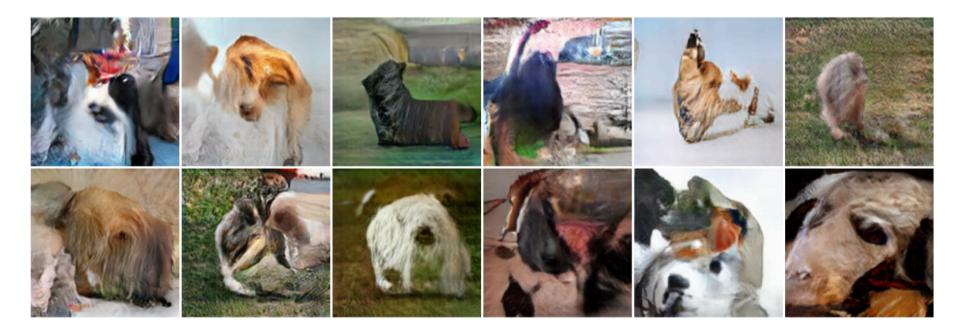


Figure 8: ImageNet 256×256 generations using an EBGAN-PT.

Content

- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference
- Some works
 - Deep Belief Network
 - EBGAN
 - BEGAN
 - MAGAN

Boundary Equilibrium GAN (BEGAN)

$$\begin{cases} \mathcal{L}_D = \mathcal{L}(x) - k_t . \mathcal{L}(G(z_D)) & \text{for } \theta_D \\ \mathcal{L}_G = \mathcal{L}(G(z_G)) & \text{for } \theta_G \\ k_{t+1} = k_t + \lambda_k (\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G))) & \text{for each training step } t \end{cases}$$

- Auto-encoder based GAN
- K0 = 0
- Increase when : $\gamma L(x) > L(G(z_G))$

Boundary Equilibrium GAN (BEGAN)

$$\begin{cases} \mathcal{L}_D = \mathcal{L}(x) - k_t . \mathcal{L}(G(z_D)) & \text{for } \theta_D \\ \mathcal{L}_G = \mathcal{L}(G(z_G)) & \text{for } \theta_G \\ k_{t+1} = k_t + \lambda_k (\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G))) & \text{for each training step } t \end{cases}$$

Boundary Equilibrium GAN (BEGAN)

$$\begin{cases} \mathcal{L}_D = \mathcal{L}(x) - k_t . \mathcal{L}(G(z_D)) & \text{for } \theta_D \\ \mathcal{L}_G = \mathcal{L}(G(z_G)) & \text{for } \theta_G \\ k_{t+1} = k_t + \lambda_k (\gamma \mathcal{L}(x) - \mathcal{L}(G(z_G))) & \text{for each training step } t \end{cases}$$

Content

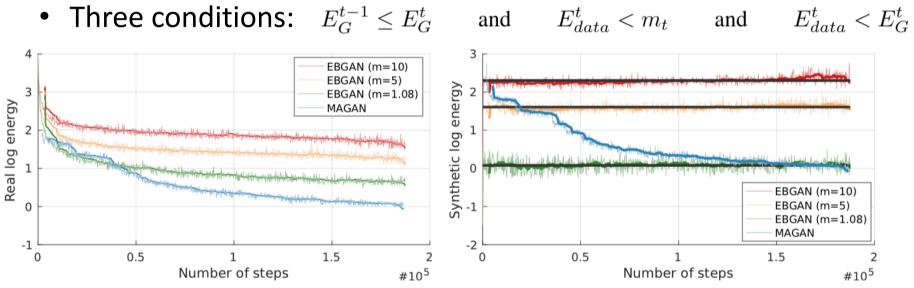
- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference

• Some works

- Deep Belief Network
- EBGAN
- BEGAN
- MAGAN

Margin Adaptation GAN (MAGAN)

- Dynamic margin m ۲
 - As the generator generates better images
 - The margin becomes smaller if satisfies the conditions



posed method and EBGAN

(a) Comparison of real samples energy between pro- (b) Comparison of synthetic samples energy between proposed method and EBGAN

Margin Adaptation GAN (MAGAN)

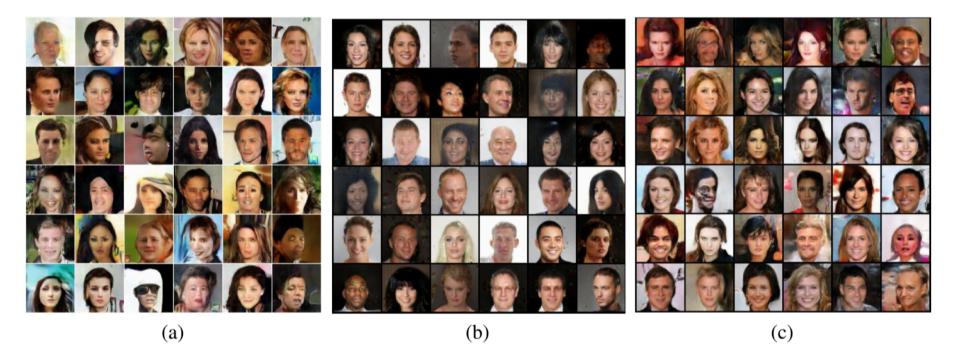


Figure 2: (a) EBGANs CelebA generation taken from [8]. (b) BEGANs CelebA generation based on [21]. (c) CelebA generation from our method. Results from BEGANs and our method are from a random mini-batch of generates samples respectively. Best viewed in color and enlarged. More samples are available in the Supplementary Material.

Reference

- LeCun et. al, A Tutorial on Energy-Based Learning
- Stanford CS 236 Lecture 11
- Energy-based GAN, Hung-yi Lee

Summary

- Energy-based models
 - Why not probabilistic models?
 - Introduction
 - Training and inference
- Some works
 - Deep Belief Network
 - EBGAN
 - BEGAN
 - MAGAN

Thanks