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e Boltzmmann Machine
* Introduction



Recap: The Stochastic Hopfield Net

1
& Zj =Tzwijyj+bi
P i

P(y; =1) =a(z)
P(yi=-1) =1-0(z)
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exp(—E (Y))

* The stochastic Hopfield net models a probability distribution over states

 The state Y is a binary sequence
* It models a Boltzmann distribution

* The probability that the network will be in any state is P(Y)
e Generative model: generates states according to P(Y)
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Recap: The Stochastic Hopfield Net

 Consider two states Y and Y’ with the i-th bit in the +1 and -1
* P(Y) =P =1|yjz) P(yj=:)
* logP(Y) —logP(Y") =log P(y; = 1|yjxi) —log P(y; = —1|yj»i)

P(y; = 1|yj=i)
1-P(y; = 1|yjzi)

= log
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Recap: The Stochastic Hopfield Net

 Consider two states Y and Y’ with the i-th bit in the +1
and -1

e logP(Y)=—-EX)+C
1
* EQY) = = (Ewithout i + Lj=iWij¥j + bi)
, 1
* EY') = =< (Ewithout i — Lj=i Wij¥j — bi)

e logP(Y)—logP(Y')=E(Y') —E(Y)
= Dj#iWijYj + b
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Recap: The Stochastic Hopfield Net

* log -

* We get:
1

* It’s a logistic!
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Recap: The Stochastic Hopfield Net

* We can make Hopfield net stochastic
* Each neuron responds probabilistically
* More in accord with Thermodynamic models
* More likely to escape spurious “weak” memories

1
Zi = Tz Wijyj + bi

PO = 1) = oz
PO = -1) = 1-0(z)
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Running the network

* Initialize the neurons

* Cycle through the neurons and set the neurons to 1/-1 according to the
probability

e Until convergence, sample the individual neurons

1
Zi = Tz Wijyj + bi

PO = 1) = oz
PO = -1) = 1-0(z)
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The overall probability

* The probability of any state y can be shown to be given by the Boltzmann
distribution

1

* EQ) =—5y'Wy
E

* P(y) = Cexp(—%

* Minimizing energy maximizes log likelihood
* The parameter of the distribution is the weights matrix W

™y

1
Zi = Tz Wl]y] ~+ bi

J#i
P(y; = 1lyjzi) = 0(z;)
P(y; = —1lyjz) = 1 —0(z)

10
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The overall probability

* The probability of any state y can be shown to be given by the Boltzmann
distribution

1
* EQ) =—5y'Wy
E
* P(y) = Cexp(—%)

* The conditional distribution of individual bits in the sequence is a logistic
* We call this Boltzmann Machine

ah

1
Zi = Tz Wl]y] ~+ bi

J#i
P(y; = 1lyjzi) = 0(z;)
P(y; = —1lyjz) = 1 —0(z)

11




CD » g
ANEFEE,
Tgoh

PEKING UNIVERSITY

Boltzmann Machine

* |t can be viewed as a generative model
* Probability of producing any binary vector vy:

1
* EQ) =—5y'Wy
E
* P(y) = Cexp(—%)

1
Zi = Tz Wl]y] ~+ bi

J#i
P(y; = 1lyjzi) = 0(z;)
P(y; = —1lyjz) = 1 —0(z)

12
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The capacity of Boltzmann Machine

* The network can store up to N N-bit patterns

* How to increase the capacity?

N neurons K neurons

13
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The capacity of Boltzmann Machine

* Add some nodes
 We don’t care the value of these nodes
* Only serve to increase the capacity
 Termed Hidden Neurons
* The neurons whose values are important: Visible Neurons
N neurons K neurons

14
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Hopfield Net v.s. Boltzmann machine

E(Y) = 2 —W;;yiyj — biy;
i<j

exp(—E(Y))
Y exp(—E(Y"))

P(Y) =

* Hopfield net
* Learn weights to “remember” target states and “dislike” other states
» State: binary pattern of all the neurons
e Boltzmann machine
* Learn weights to assign more probability to patterns we “like” and less to
other patterns

15
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e Boltzmmann Machine

* Training without hidden neurons

16



ST »
AN EAE A

PEKING UNIVERSITY

Training the network

E(Y) = 2 —W;;yiyj — biy;
i<j

exp(—E(Y))
Y exp(—E(Y"))

P(Y) =

* First we consider the setting without hidden neurons

e Boltzmann machine
* Given aset of training inputs Y7, Y, ..., Yy
* Assign higher probability to patterns seen more frequently
* Assign lower probability to patterns that are not seen at all

17
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Maximum likelihood training

log(P(Y)) = (2 wijyiyj> — log (Z exp (2 Wij)’t'Yf))

i<j Y’ i<j

1
L= NE log(P(Y))

YES
- %ZY(Zi<j WiniYJ') — log(Zy eXp(ZKf Wijy"’y]{))

* The loss function is average log likelihood of training vectors S =
{Y,,Y5,...,Yn}
* should be maximized

* In the first summation, y; and y; are bits of Y

* In the second summation, , y; and y]f are bits of Y’ (vectors
outside S)
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Maximum likelihood training

R R )

i<j 1<Jj
dWU N YLy] '

* Use gradient ascent

* The first term is easy to calculate
* The average y;y; over all training vectors

e But the second term is the sum of almost all states
e exponential number!
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The second term

dlog(Zy: exp(Xicjwijyivj)) _ Z exp(Zic; Wij¥iyj) 1o
y/! Z:Y

. r yy
dwi; nexp(Lic;wisyi'yy') "

= Dy’ P(Y’)y,;'y]f

* The second term is the expected value of y;, y]f over all possible
values of the state

* We cannot compute it exhaustively, then how?

* Sampling!
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The second term

dlog(Ty: exp(Ticjwijyiv))) 2 Py’

dw;;

. 1 I
o I\_/I ZY’EYsamele yly]

* The expectation can be estimated as the average of samples drawn
from the distribution

* How to sample?

21
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Gibbs Sampling

* A special Metropolis-Hastings algorithm
* Use the conditional distribution

* Suppose VY1,¥2, -, Vn:
 Randomly set values to them
* Update y; based on P(y;|yj=;)
* Get a Markov Chain
e Skip the first several samples and sample at intervals

* The samples are approximately close to the joint distribution

22
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Maximum Likelihood Training

M szf M Z YiJj

Y’ EYsample

W;:;: = W;: +
Lj Lj dWij

 The overall gradient ascent rule

23
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Initialize weights

Obtain “state samples”

Compute gradient and update weights
Iterate until convergence

L 1 z 1 o
= YiVi — 7 YiJVj
dWl] N Y MY’EYsample
dLl
Wij = Wij ~+ CXWU

24
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Training Process

P —— Viyi

Y’EYsample
N dL

. . a_

Y dWl]

Energy

state -
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e Boltzmmann Machine

* Training with hidden neurons

26
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Training with hidden neurons

* For a given pattern of visible neurons, there are many hidden patterns (2X)

* We want to choose the one with lowest energy
* But exponential search space is exponential!

visible neurons hidden neurons

27
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Training the network

exp(—E (Y))
Y5 €xp(—E(Y"))

P(Y) = P(V, H)

P(Y) =

visible neurons hidden neurons

P(V) = zP(Y)
H

* Y=(V, H)
e V:output of the visible neurons
* H:output of the hidden neurons

 The marginal probabilities over visible bits are interested
* The hidden bits are the latent representation learned by the network

28
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Training the network

exp(—E (Y))
ZSI eXp(_E(Y,))

P(Y) = P(V, H)

P(Y) =

visible neurons hidden neurons

P(V) = zP(Y)
H

* Y=(V, H)
* V:output of the visible neurons Maximize this term
* H: output of the hidden neurons for training patterns

 The marginal probabilities over visible bits are interested
* The hidden bits are the latent representation learned by the network

29
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Training the network
E(Y) = z —W;;yiyj — biy;

visible neurons  hidden neurons <
: B exp(—E (Y))
P = S e CE)
PV = exp(—E(Y))

3 exp(—E(Y))

* Train the network to assign a desired probability distribution to the
visible states

* Probability of visible state sums over all hidden states
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Maximum likelihood training

log(P(V)) = log (2 exp <Z Wuyly,)> — log (Z exp (2 Wuyly,»

I<j 1<Jj
1
= Z log(P(V))
Ve
- %Zve{v} log(Xy exp(Xicjwisyiv;)) — log(Zyr exp(Zic; wi¥ivj))

* The loss function is average log likelihood of visible neurons of
training vectors {V}= {V;, 1>, ..., Vy}
* should be maximized
* Two terms have the same format
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Maximum likelihood training

L= % Z log (z exp (2 Wuyly])> ~log (z exp (2 wuyly,»

VE{V} i<j i<j
dwl =y Z Z PYIV)yy; — 2 P(Y")y!y;
J VE(V} H

* Similar as the setting without hidden neurons

e But both terms are summations over an exponential states
* Both need sampling
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Maximum likelihood training

z z P(YIV)yiy; — z P(Y")yiy;

VE{V}

1
2 P(Y|V)yiy; = P 2 Viyj

HEHsamples

ZP(Y Wy =g Y Y]

Y ESsamples

dWU

* The first term is calculated as the average of sampled hidden state with
the visible state fixed

* The second term is calculated as the average of sampled states “freely”
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Training Process— Sample 1

* For each training pattern V;:

* Fix visible neurons according to V;
* Let the hidden neurons evolve from a random initial point to

generate H;
* GetY; = [V}, Hi]
* Repeat K times to generate synthetic training
Y =M1V YikYo1 -, Yukl

visible neurons  hidden neurons

34
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Training Process — Sample 2

* Unclamp the visible units and let the entire network evolve several
times to generate

Ysamples — {Ysample,lr Ysample,z» =t Ysample,M }

visible neurons  hidden neurons

35
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Training Process

dl 1 z 1 o
dw;;  NK LT "M 717
Y Y’EYsample
N dL
Wij = Wij T @=="
J J dWij
visible neurons  hidden neurons

Initialize weights

Get training samples

Compute gradient and update weights
Iterate until convergence

36
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e Boltzmmann Machine

* Summary
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Boltzmann Machine

» Stochastic extension of Hopfield network
e Store more patterns than Hopfield network through hidden neurons

* Application:
e Pattern completion

e Pattern denoising
 Computing conditional probabilities of patterns

* Classification
* Add more bits representing class

* |yq, ..., YN, class]
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Boltzmann Machine

* Training process takes a long time...
* Can’t work for large problems

* How to solve these problems?

39
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e Restricted Boltzmann Machine
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Restricted Boltzmann machine (RBM)

e Restricted

* There are no visible-visible and hidden-hidden Hidden units
connections. Visible units

* Proposed as “Harmonium Models” by Paul
Smolensky ’

e Joint Distribution: ,
. _ exp(VITWH+bV+cH)
P(V, H) - th: exp(VTWH +bV'+cH") ‘

41
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Restricted Boltzmann machine (RBM)

Hidden units

Visible units
Hidden: Zi = Z] WjiVj + bi P(hl = 1) = 1+el_zi ’

1

Visible: Vi = Z] Wjihi + bi P(vi — 1) =

* Pros:
 Sample for hidden neurons: no looping
e Sample for all neurons: bigraph

42



Restricted Boltzmann machine (RBM)

Hidden: Zi = Z] Wjivi + bi P(hl - 1) — 1+el_zi
- 1
Visible: y; = % jwj;h; + b; P(v;=1) = e

* For each sample:
* |nitialize visible neurons

* lteratively generate hidden and visible units

al
BP = <, h>0—<v,h >*
dwij

Visible units
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Hidden units

43
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Contrastive Divergence

e Recall in Hopfield Network:
* No need to raise the entire surface, just the neighborhood

* One iteration is enough in RBM
1
o L8P — b >0—< p b >1

dWij

44
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Restricted Boltzmann machine (RBM)

* Generative models for binary data

* Can be extended to continuous-valued data
* Change the distribution of visible neurons (or hidden neurons)
 “Exponential Family Harmoniums with an Application to

Information Retrieval”, Welling et al., 2004

» Useful for classification and regression
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Boltzmann Machines: samples

4 RN RaRaRaRaRaKaX 1
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* Deep Boltzmann Machine
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Deep Boltzmann Machines

e Stacked RBMs are one of the first deep
generative models

h®™

* Bottom layer v are visible neurons h®@
* Multiple hidden layers

h®

48
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Boltzmann Machines: samples

Training samples Generated samples
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Thanks
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