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Recap: The Stochastic Hopfield Net

• The stochastic Hopfield net models a probability distribution over states
• The state Y is a binary sequence
• It models a Boltzmann distribution

• The probability that the network will be in any state is P(Y)
• Generative model: generates states according to P(Y)

𝐸 𝑌 =$
!"#

−𝑤!#𝑦!𝑦# − 𝑏!𝑦!

𝑃 𝑌 =
exp −𝐸 𝑌

∑!" exp(−𝐸(𝑌′))

𝑧# =
1
𝑇
0
$%#

𝑤#$𝑦$ + 𝑏#

𝑃 𝑦# = 1 = 𝜎 𝑧#
𝑃 𝑦# = −1 = 1 − 𝜎(𝑧#)
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Recap: The Stochastic Hopfield Net

• Consider two states Y and Y’ with the i-th bit in the +1 and -1

• 𝑃 𝑌 = 𝑃 𝑦# = 1 𝑦$%#) 𝑃(𝑦$%#)

• log 𝑃 𝑌 − log𝑃 𝑌" = log𝑃 𝑦# = 1 𝑦$%# − log𝑃 𝑦# = −1 𝑦$%#

= log
& 𝑦# = 1 𝑦$%#
'(& 𝑦# = 1 𝑦$%#



6

Recap: The Stochastic Hopfield Net

• Consider two states Y and Y’ with the i-th bit in the +1 
and -1

• log 𝑃 𝑌 = −𝐸 𝑌 + 𝐶
• 𝐸 𝑌 = − '

) (𝐸*#+,-.+ # +∑$%#𝑤#$𝑦$ + 𝑏# )

• 𝐸 𝑌′ = − '
) (𝐸*#+,-.+ # −∑$%#𝑤#$𝑦$ − 𝑏# )

• log 𝑃 𝑌 − log𝑃 𝑌" = 𝐸 𝑌" − 𝐸(𝑌)
= ∑$%#𝑤#$𝑦$ + 𝑏#
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Recap: The Stochastic Hopfield Net

• log
& 𝑦# = 1 𝑦$%#
'(& 𝑦# = 1 𝑦$%#

= ∑$%#𝑤#$𝑦$ + 𝑏#

• We get:
• 𝑃 𝑦# = 1 𝑦$%# = '

'/0!(∑$%& '&$($)*&)

• It’s a logistic!
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Recap: The Stochastic Hopfield Net

• We can make Hopfield net stochastic
• Each neuron responds probabilistically
• More in accord with Thermodynamic models
• More likely to escape spurious “weak” memories

𝑧# =
1
𝑇0
$%#

𝑤#$𝑦$ + 𝑏#

𝑃 𝑦# = 1 = 𝜎 𝑧#
𝑃 𝑦# = −1 = 1 − 𝜎(𝑧#)



9

Running the network

• Initialize the neurons
• Cycle through the neurons and set the neurons to 1/-1 according to the 

probability
• Until convergence, sample the individual neurons 

𝑧# =
1
𝑇0
$%#

𝑤#$𝑦$ + 𝑏#

𝑃 𝑦# = 1 = 𝜎 𝑧#
𝑃 𝑦# = −1 = 1 − 𝜎(𝑧#)
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The overall probability

• The probability of any state y can be shown to be given by the Boltzmann 
distribution
• 𝐸 𝑦 = − '

)𝑦
1𝑊𝑦

• 𝑃 y = 𝐶𝑒𝑥𝑝(− 2 3
1 )

• Minimizing energy maximizes log likelihood
• The parameter of the distribution is the weights matrix W 

𝑧# =
1
𝑇0
$%#

𝑤#$𝑦$ + 𝑏#

𝑃 𝑦# = 1|𝑦$%# = 𝜎 𝑧#
𝑃 𝑦# = −1|𝑦$%# = 1 − 𝜎(𝑧#)
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The overall probability

• The probability of any state y can be shown to be given by the Boltzmann 
distribution
• 𝐸 𝑦 = − '

)𝑦
1𝑊𝑦

• 𝑃 𝑦 = 𝐶𝑒𝑥𝑝(− 2 3
1 )

• The conditional distribution of individual bits in the sequence is a logistic 
• We call this Boltzmann Machine

𝑧# =
1
𝑇0
$%#

𝑤#$𝑦$ + 𝑏#

𝑃 𝑦# = 1|𝑦$%# = 𝜎 𝑧#
𝑃 𝑦# = −1|𝑦$%# = 1 − 𝜎(𝑧#)
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Boltzmann Machine

• It can be viewed as a generative model
• Probability of producing any binary vector y:
• 𝐸 𝑦 = − '

)𝑦
1𝑊𝑦

• 𝑃 𝑦 = 𝐶𝑒𝑥𝑝(− 2 3
1 )

𝑧# =
1
𝑇0
$%#

𝑤#$𝑦$ + 𝑏#

𝑃 𝑦# = 1|𝑦$%# = 𝜎 𝑧#
𝑃 𝑦# = −1|𝑦$%# = 1 − 𝜎(𝑧#)
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The capacity of Boltzmann Machine

• The network can store up to N N-bit patterns

• How to increase the capacity?

N neurons K neurons



14

The capacity of Boltzmann Machine

• Add some nodes
• We don’t care the value of these nodes
• Only serve to increase the capacity
• Termed Hidden Neurons

• The neurons whose values are important: Visible  Neurons
N neurons K neurons
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Hopfield Net v.s. Boltzmann machine

• Hopfield net
• Learn weights to “remember” target states and “dislike” other states
• State: binary pattern of all the neurons

• Boltzmann machine
• Learn weights to assign more probability to patterns we “like” and less to 

other patterns

𝐸 𝑌 =$
!"#

−𝑤!#𝑦!𝑦# − 𝑏!𝑦!

𝑃 𝑌 =
exp −𝐸 𝑌

∑!" exp(−𝐸(𝑌′))
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Training the network

• First we consider the setting without hidden neurons
• Boltzmann machine

• Given a set of training inputs 𝑌$, 𝑌%, … , 𝑌&
• Assign higher probability to patterns seen more frequently
• Assign lower probability to patterns that are not seen at all

𝐸 𝑌 =$
!"#

−𝑤!#𝑦!𝑦# − 𝑏!𝑦!

𝑃 𝑌 =
exp −𝐸 𝑌

∑!" exp(−𝐸(𝑌′))
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Maximum likelihood training

• The loss function is average log likelihood of training vectors 𝑆 =
{𝑌', 𝑌), … , 𝑌4}
• should be maximized
• In the first summation, 𝑦# and 𝑦$ are bits of Y
• In the second summation, , 𝑦#" and 𝑦$" are bits of Y’ (vectors 

outside S)

log 𝑃 𝑌 = $
!"#

𝑤!#𝑦!𝑦# − log $
'!
exp $

!"#

𝑤!#𝑦!(𝑦#(

ℒ =
1
𝑁
$
'∈*

log(𝑃(𝑌))

= $
&
∑' ∑!"#𝑤!#𝑦!𝑦# − log ∑'! exp ∑!"#𝑤!#𝑦!

(𝑦#
(
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Maximum likelihood training

• Use gradient ascent

• The first term is easy to calculate
• The average 𝑦#𝑦$ over all training vectors

• But the second term is the sum of almost all states
• exponential number!

ℒ =
1
𝑁
$
'

$
!"#

𝑤!#𝑦!𝑦# − log $
'!
exp $

!"#

𝑤!#𝑦!(𝑦#(

𝑑ℒ
𝑑𝑤!#

=
1
𝑁
$
'

𝑦!𝑦# −?
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The second term

• The second term is the expected value of 𝑦#", 𝑦$" over all possible 
values of the state

• We cannot compute it exhaustively, then how?

• Sampling!

𝑑 log ∑'! exp ∑!"#𝑤!#𝑦!
(𝑦#
(

𝑑𝑤!#
=$

'!

exp ∑!"#𝑤!#𝑦!
(𝑦#
(

∑'!! exp ∑!"#𝑤!#𝑦!((𝑦#((
𝑦!(𝑦#(

= ∑5, 𝑃 𝑌" 𝑦#"𝑦$"
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The second term

• The expectation can be estimated as the average of samples drawn 
from the distribution

• How to sample?

𝑑 log ∑'! exp ∑!"#𝑤!#𝑦!(𝑦#(

𝑑𝑤!#
=$

'(

𝑃 𝑌( 𝑦!
(𝑦#
(

= '
6
∑5,∈5(-./01

𝑦#"𝑦$"
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Gibbs Sampling

• A special Metropolis-Hastings algorithm
• Use the conditional distribution

• Suppose 𝑦$, 𝑦%, … , 𝑦+:
• Randomly set values to them
• Update 𝑦! based on 𝑃(𝑦!|𝑦#,!)
• Get a Markov Chain
• Skip the first several samples and sample at intervals

• The samples are approximately close to the joint distribution
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Maximum Likelihood Training

• The overall gradient ascent rule

𝑑ℒ
𝑑𝑤#$

=
1
𝑁0

5

𝑦#𝑦$ −
1
𝑀 0

5,∈5(-./01

𝑦#"𝑦$"

𝑤#$ = 𝑤#$ + 𝛼
𝑑ℒ
𝑑𝑤#$
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Training Process

• Initialize weights
• Obtain “state samples”
• Compute gradient and update weights
• Iterate until convergence

𝑑ℒ
𝑑𝑤#$

=
1
𝑁
0
5

𝑦#𝑦$ −
1
𝑀

0
5,∈5(-./01

𝑦#"𝑦$"

𝑤#$ = 𝑤#$ + 𝛼
𝑑ℒ
𝑑𝑤#$
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Training Process

• Similar to the update rule for Hopfield network

𝑑ℒ
𝑑𝑤#$

=
1
𝑁
0
5

𝑦#𝑦$ −
1
𝑀

0
5,∈5(-./01

𝑦#"𝑦$"

𝑤#$ = 𝑤#$ + 𝛼
𝑑ℒ
𝑑𝑤#$



• Boltzmann Machine
• Introduction
• Training without hidden neurons
• Training with hidden neurons
• Summary

• Restricted Boltzmann Machine
• Deep Boltzmann Machine

26

Content



27

Training with hidden neurons

• For a given pattern of visible neurons, there are many hidden patterns (2-)

• We want to choose the one with lowest energy
• But exponential search space is exponential!

visible neurons hidden neurons
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Training the network

• Y=(V, H)
• V: output of the visible neurons
• H: output of the hidden neurons

• The marginal probabilities over visible bits are interested
• The hidden bits are the latent representation learned by the network

𝑃 𝑌 =
exp −𝐸 𝑌

∑!" exp(−𝐸(𝑌′))

𝑃 𝑌 = 𝑃(𝑉, 𝐻)

𝑃 𝑉 =$
.

𝑃(𝑌)

visible neurons hidden neurons
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Training the network

• Y=(V, H)
• V: output of the visible neurons
• H: output of the hidden neurons

• The marginal probabilities over visible bits are interested
• The hidden bits are the latent representation learned by the network

𝑃 𝑌 =
exp −𝐸 𝑌

∑!" exp(−𝐸(𝑌′))

𝑃 𝑌 = 𝑃(𝑉, 𝐻)

𝑃 𝑉 =$
.

𝑃(𝑌)

visible neurons hidden neurons

Maximize this term 
for training patterns
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Training the network

• Train the network to assign a desired probability distribution to the 
visible states

• Probability of visible state sums over all hidden states

𝐸 𝑌 =$
!"#

−𝑤!#𝑦!𝑦# − 𝑏!𝑦!

𝑃 𝑌 =
exp −𝐸 𝑌

∑!" exp(−𝐸(𝑌′))

𝑃 𝑉 =0
8

exp −𝐸 𝑌
∑!" exp(−𝐸(𝑌′))

visible neurons hidden neurons
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Maximum likelihood training

• The loss function is average log likelihood of visible neurons of 
training vectors {V}= {𝑉', 𝑉), … , 𝑉4}
• should be maximized
• Two terms have the same format

log 𝑃 𝑉 = log $
.

exp $
!"#

𝑤!#𝑦!𝑦# − log $
'!
exp $

!"#

𝑤!#𝑦!(𝑦#(

ℒ =
1
𝑁
$
/∈{/}

log(𝑃(𝑉))

= $
&
∑/∈{/} log ∑. exp ∑!"#𝑤!#𝑦!𝑦# − log ∑'! exp ∑!"#𝑤!#𝑦!

(𝑦#
(
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Maximum likelihood training

• Similar as the setting without hidden neurons

• But both terms are summations over an exponential states
• Both need sampling

ℒ =
1
𝑁
$
/∈{/}

log $
.

exp $
!"#

𝑤!#𝑦!𝑦# − log $
'!
exp $

!"#

𝑤!#𝑦!(𝑦#(

𝑑ℒ
𝑑𝑤!#

=
1
𝑁
$
/∈{/}

$
.

𝑃(𝑌|𝑉)𝑦!𝑦# −$
'!
𝑃 𝑌( 𝑦!(𝑦#(
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Maximum likelihood training

• The first term is calculated as the average of sampled hidden state with 
the visible state fixed

• The second term is calculated as the average of sampled states “freely”

𝑑ℒ
𝑑𝑤!#

=
1
𝑁
$
/∈{/}

$
.

𝑃(𝑌|𝑉)𝑦!𝑦# −$
'!
𝑃 𝑌( 𝑦!

(𝑦#
(

$
.

𝑃(𝑌|𝑉)𝑦!𝑦# =
1
𝐾

$
.∈."#$%&'(

𝑦!𝑦#

!
)*

𝑃 𝑌* 𝑦+*𝑦,* =
1
𝑀 $

'!∈*"#$%&'"

𝑦!(𝑦#(
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Training Process– Sample 1

• For each training pattern 𝑉#:
• Fix visible neurons according to 𝑉#
• Let the hidden neurons evolve from a random initial point to 

generate 𝐻#
• Get 𝑌# = [𝑉#, 𝐻#]

• Repeat K times to generate synthetic training
• 𝑌 = {𝑌',', 𝑌',), … , 𝑌',:, 𝑌),', … , 𝑌4,:}

visible neurons hidden neurons
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Training Process – Sample 2

• Unclamp the visible units and let the entire network evolve several 
times to generate
• 𝑌!;<=>0! = {𝑌!;<=>0,', 𝑌!;<=>0,), … , 𝑌!;<=>0,6}

visible neurons hidden neurons
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Training Process

• Initialize weights
• Get training samples
• Compute gradient and update weights
• Iterate until convergence

𝑑ℒ
𝑑𝑤#$

=
1
𝑁𝐾

0
5

𝑦#𝑦$ −
1
𝑀

0
5,∈5(-./01

𝑦#"𝑦$"

𝑤#$ = 𝑤#$ + 𝛼
𝑑ℒ
𝑑𝑤#$

visible neurons hidden neurons
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Boltzmann Machine

• Stochastic extension of Hopfield network
• Store more patterns than Hopfield network through hidden neurons

• Application:
• Pattern completion
• Pattern denoising
• Computing conditional probabilities of patterns
• Classification
• Add more bits representing class
• [𝑦', … , 𝑦4, 𝑐𝑙𝑎𝑠𝑠]
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Boltzmann Machine

• Training process takes a long time…

• Can’t work for large problems

• How to solve these problems?
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Restricted Boltzmann machine (RBM)

• Restricted
• There are no visible-visible and hidden-hidden 

connections.
• Proposed as “Harmonium Models” by Paul 

Smolensky

• Joint Distribution:

• 𝑃 𝑉, 𝐻 = 234(/-6.78/79.)
∑

!"#"
234(/’-6.’78/’79.’)
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Restricted Boltzmann machine (RBM)

• Pros:
• Sample for hidden neurons: no looping
• Sample for all neurons: bigraph

Hidden: 𝑧! = ∑#𝑤#!𝑣! + 𝑏! 𝑃 ℎ! = 1 = $
$7=./0

Visible: 𝑦! = ∑#𝑤#!ℎ! + 𝑏! 𝑃 𝑣! = 1 = $
$7=.10
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Restricted Boltzmann machine (RBM)

• For each sample:
• Initialize visible neurons
• Iteratively generate hidden and visible units
• > ?@A B

>C02
= < 𝑣, ℎ >D−< 𝑣, ℎ >E

Hidden: 𝑧! = ∑#𝑤#!𝑣! + 𝑏! 𝑃 ℎ! = 1 = $
$7=./0

Visible: 𝑦! = ∑#𝑤#!ℎ! + 𝑏! 𝑃 𝑣! = 1 = $
$7=.10
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Contrastive Divergence

• Recall in Hopfield Network:
• No need to raise the entire surface, just the neighborhood

• One iteration is enough in RBM
• ? @AB =

?*&$
=< 𝑣, ℎ >C−< 𝑣, ℎ >'

v0

v1

𝑣!

h0

h1

ℎ!

…

v0

v1

h0

h1
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• Generative models for binary data

• Can be extended to continuous-valued data
• Change the distribution of visible neurons (or hidden neurons)
• “Exponential Family Harmoniums with an Application to 

Information Retrieval”, Welling et al., 2004

• Useful for classification and regression

Restricted Boltzmann machine (RBM)
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Boltzmann Machines: samples
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Deep Boltzmann Machines

• Stacked RBMs are one of the first deep 
generative models

• Bottom layer v are visible neurons
• Multiple hidden layers
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Boltzmann Machines: samples
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