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e Before

All feed forward structures

Inputs O

e What about ...
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Consider this network

_[+lifx=0
f(x)_{—lifx<0

Vi = f(z w;ji Vi + b;)

JE!

The output of each neuron is +1/-1

* Every neuron receives input from every other neuron
Every neuron outputs signals to every other neuron
The weight is symmetric: w;; = wj;  assumew; =0
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Hopfield Net

_[+lifx=0
f(x)_{—lifx<0

Vi = f(z w;ji Vi + b;)

JE!

* At each time, each neuron receives a “field”: Zj;tiwji yj + b;
* If the sign of the field matches its own sign, nothing happens;

e If the sign of the field opposes its own sign, it “flips” to match the
sign of the field.

Yi =~V lf Y (2 Wjiyj + bi) <0

Jj#i
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Hopfield Net

_[+lifx=0
f(x)_{—lifx<0

Vi = f(z w;ji Vi + b;)

JE!

e If the sign of the field opposes its own sign, it “flips” to match the
sign of the field.
* “Flips” of a neuron may cause other neurons to “flip”!

Yi =~V lf Y (2 Wjiyj + bi) <0

Jj#i
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Example
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* Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1
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Hopfield Net

* If the sign of the field opposes its own sign, it “flips” to match the field
* Which will change the field at other nodes
* Which may then flip

* Which may cause other neurons to flip
 Andsoon..

e Will this continue forever?

12
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Hopfield Net

_[+lifx=0
f(x)_{—lifx<0

Vi = f(z w;ji Vi + b;)

JE!

* Let yl-o be the output of the i-th neuron before it responds to the current field
* Let yil be the output of the i-th neuron before it responds to the current field

Vi = =Y if Vi (Z wj;yj + bi) <0

Jj#i

13
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Hopfield Net

f(x)={t1§;iig Yi=f(zwji3’j+bi)

J#i

o Ify) = f(Xjewjiyj + b)), then yi = y)
* No “flip” happens

yi <Z wj; ¥j + bi) — 7 <z wj; i + bi) =0

J#Fi JE

14
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Hopfield Net

f(x)={t1§;iig Yi=f(zwji3’j+bi)

J#i

o« Ify? # f(Xj2Wjiyj + by), then y! = —y?
* "Flip” happens

Vi (X jeiwjiyj +bi) = v (Zjeiwji y; + bi) = 2y (T2 wji y; + bi) >0

* Every "flip” is guaranteed to locally increase

15
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Globally

e Consider the following sum across all nodes:
* EV1, Y2 0 IN) = — i Vi =i Wjiyj + by)
= — X j=i Wij Yi¥Vj — Libiyi

* Assumew;; =0

 For aneuron k that “flips”:
o AE(yy) = E(yl, s Vs o) yN) — E(yl, s Vs ,yN)
= —(vk —yr) e Wik yj + by
* Always <0!
* Every "flip” results in a decrease in E
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Globally

e Consider the following sum across all nodes:

* E(y1, Y2, 0 YN) = — 2 j=i Wij YiVj — i biyi
* Eis bounded:

* Emin = — X j=i|wij| — Zilbil
 The minimum variation of E in a "flip” is:

* |AE|pmin = i,{yir,{lzigl___N}Zl 2 =i Wjiyj + b; |

* So any sequence of flips must converge in a finite number of steps
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The Energy of a Hopfield Net

* The E is the energy of the network

* E(y1, Y2, 0 YN) = — 2 j=i Wij YiVj — i biyi
* The evolution of a Hopfield network decreases its energy

* Analogy: Spin Glass



Spin Glass

* Each dipole in a disordered magnetic material
tries to align itself to the local field
* —-Filp

* p; is vector position of i-th dipole
* --output of each neuron y;

* The contribution of a dipole to the field
depends on interaction J
* -- Weight w;;
* Derived from the “Ising” model for magnetic
materials (Ising and Lenz, 1924)
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Total field at current dipole:

f(pi) = Z]jixj + b;
ET

intrinsic external

19




Spin Glass

Response of current dipole

Total energy (Hamiltonian) of the system

X = .
—X; otherwise

E = _%Zixif(pi)

= — z Z]jixixj - 2 bix;

i j>i i

Evolve to minimize the energy

“Flips” will stop

_ Yxiif sign(x f(p) =1
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Total field at current dipole:

f(pi) = Z]jixj + b;
ET

intrinsic external

20
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The system stops at one of its stable point =" —.:_.':;:_: =
* local minimum of the energy SR

Every point will return to the stable point
after evolving

* The system remembers its stable state

PE

state

21
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* Discrete Hopfield Neural Networks

 How to use

22
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Hopfield Network

_[+1lifx=0
f(x)_{—lifx<0 0\

state

Vi = f(z W;ji Vi + b;)

J#i

* The bias is typically not utilized
e It’s similar to having a single extra neuron that is pegged to 1.0

* The network will evolve until it arrives at a local minimum in the energy contour

23
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Content-addressable memory

\

PE

state

* Each minima is a “stored” pattern
e How to store?

* Recall memory content from partial or corrupt values
* Also called associative memory

* The path is not unique

24
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Real-world Examples

* Take advantage of content-addressable memory

Input Process of Evolution

25
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Real-world Examples

Degraded Eeconstructio

Hopfield network reconstructing degraded images
from notsy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield 26
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Computation

1. Initialize network with initial pattern
Vi = Xi, 0<i<N-1
2. Iterate until convergence

Yi=f<szin+bi>,0SiSN—1

JE!

* Updates can be done sequentially, or all at once

e Usually update all nodes once per epoch

* In one epoch, the nodes are updated randomly
* The system will converge to the local minimum

* Not deterministic
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Evolution

* The energy is a quadratic function.

* E = =2z Wij YiVj — Libiyi

e But why not global minimum?

* For DHN, the energy contour is only defined on a
lattice
* Corners of a unit cube on [—1, 1]V

28
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Evolution

e |f we use tanh for activation

 Still not global minimum, why?
e Local minimum still exists

* An example for a 2-neuron net 1 T __} _NTWW(—
* Without bias, the local minimum is 2 Wy= 2( W)

symmetric, why?

1 "

0.5+

-0.5¢
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* Discrete Hopfield Neural Networks

* How to train

30
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Issues to be solved

 How to store a specific pattern?
* How many patterns can we store?

* How to “retrieve” patterns better?

31
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How to store a specific pattern?

* For an image with N pixels, we need:

* N neurons
. N(N-1)

weights (symmetric)

* Consider the setting without bias
* E ==Y j=i Wij ViV

* Goal: Design W so that the energy is local minimum at pattern P = {y;}

32



TN at - J’ »97
e 579z
759%

PEKING UNIVERSITY

Method1: Hebbian Learning

* We want: (2
‘ f(Zjiiniyj) = Yy; Vi 0‘”"0

* Hebbian Learning: ".9

* Wi = V)i

fEiriwiiyi) = F(Zjeivivivi) = FEjuyivi) = FO) = yi

The pattern is stationary

1
* E= =2z Wij ¥iyj = —5 NN = 1)

33
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Method1: Hebbian Learning

* Note:
* |f we store P, we will also store —P

* For K patterns:
Vi =[yE Y5 YKL k=1..K
1 k. k
* Wi =2k Vi V)
e Each pattern is stable

34



ANELFEE
O "_S‘ PEKING UNIVERSITY

Method1: Hebbian Learning - How many patterns can we st

* A network of N neurons trained by Hebbian learning can store
~0.14N patterns with low probability of error (<0.4%)
 Assume P(bit=1)=0.5
e Patterns are orthogonal — maximally distant
* The maximum Hamming distance between two N-bit
patterns is N/2 (because symmetry)
* Two patterns differ in N/2 bits are orthogonal

 The proof can be found in 11-785 CMU Lec 17
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Method1l: Hebbian Learning - Example: 4-bit pattern

* Left: stored pattern. Right: energy map
* Local minima exists

Topological representation on a Karnaugh map T

1,1 1,1

-1.1

-1,1

11 11

36
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Method1: Hebbian Learning - Parasitic Patterns

* Parasitic patterns are not expected

Target patterns Parasites

Energy

v

state

37
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Method2: Geometric approach

* Consider W = yy" i.e., wj; = y;y;
W is a positive semidefinite matrix

« F= —%yTWy — by is convex quadratic

 But remember vy is the corner of the unit
hypercube

38



Method2: Geometric approach

Evolution of the network:

e Rotate y and project it onto the nearest corner.

Projection: sign(Wy)

i

Wy
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Method2: Geometric approach

 Goal: Design W such that f(Wy) =y

* Simple solution: y is the Eigenvector of W
* Note the eigenvalue of W are non-negative
* The eigenvector of any symmetric matrix are orthogonal

* Storing K orthogonal patterns Y = [y, V>, ..., Vk]
o W =YAYT
e A is a positive diagonal matrix diag(A4, 4,, ... A)
 Hebbianrule: 4 = 1.
* All patterns are equally important
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Method3: Optimization

E=—Sy"Wy—bTy
This must be maximally low for target patterns
Also must be maximally high for all other patterns

W = argminy, Zyeyp E (y) — Zyeyp E(y)
Yy: set of target pattern
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Method3: Optimization

s W = argminy, Zyeyp E()’) — Zyeyp E(y)
J Yp: set of target pattern

* Intuitively:

Energy

state

42
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Method3: Optimization

e W = argminW ZyEYp E(y) _ Zy&Yp E(y)

* So gradient descent:
W =W+ aCyer,yy" — Zyer, y¥")

* Repeating a pattern can emphasize the
importance.

What abouty € Yp?




Method3: Optimization

* W=W+aCyey,vy" — Zyer, v¥7)

* We only need to focus on valleys.
* How to find valleys?

 Random sample and let it evolve

Energy

state

u\‘Nl,,“_ »
& % é) .: < _5)’ 25?'
: 529y =
Tgoh

PEKING UNIVERSITY

44



Method3: Optimization

e W =W + a(Zyeyp ny - Zerp,y=valley ny)

e |Initialize W

* Repeat until convergence or limitation:
e Sample target pattern
 Randomly initialize the network and let it evolve
* Update weights

Energy

state
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Method3: Optimization

W=W+a (Zerp yy' — Yyevpy=valley VY )

* Initialize W

* Repeat until convergence or limitation:
e Sample target pattern
* |nitialize the network with target pattern and let it evolve
* Update weights

Energy

state 46
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Method3: Optimization
cW=W+ a(ZyEYp ny - ZyGEYp,y=valley ny)

* Initialize W
* Repeat until convergence or limitation:
e Sample target pattern
* |nitialize the network with target pattern and let it evolve a
few steps
* Update weights

Energy

state 47



IR »

TN at - J’ »97

< 529y =
592

PEKING UNIVERSITY

Contents
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Thinking
* The capacity of Hopfield Network

* How many patterns can be stored?
* Orthogonal <N; Non-orthogonal?

* Something bad happens:
* When noise increase...

E(HCT1) brifE(572) brifE(EC 1) brifE (R 1) brifE(H72)
I I I 1) ey
A (% UI5I(72) BLBI(F1) UBI(A71)

= K
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Thinking
* Something bad happens:
* The results are not perfect...

Hophield network reconstructing degraded images
from notsy (top) or patrtial (bottorn) cues.
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Thinking
* Something bad happens:

* The results are not perfect...
e Because of the local minima

Target patterns Parasites

Energy

v

state

51
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Thinking — Stochastic Hopfield Net

* Something bad happens:
* The results are not perfect...

* We can make Hopfield net stochastic
* Each neuron responds probabilistically
* If the difference if not large, the probability of flipping approaches 0.5
* Tisa “temperature” parameter

1
Zi = Tz Wijyj + bi

PO = 1) = o(z)
Plyi=-1=1-0(%)
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Thinking — Stochastic Hopfield Nets

 What’s the final state? (How do we recall a memory?)
* The average of the final few iterations

1 L
= — > 0?
y (M Zt:L—M+1Yt>

53
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Continuous Hopfield Neural Network

* Energy function :

n

k= _%iiwz‘/ViV,/ _ZV"[" +i%j:—'f‘l(v)a’v
i=1

i=1 j=1 i=1

The output of each neuron are real numbers in [-1,+1]
e Application: optimization (TSP)

* [ssues:

* Design the energy function for specific problems

* The variable of the problem and the neuron of the CHNN

55
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Reference

* CMU 11-785 Lecl7, 18
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Thanks
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