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Data Representation

* How to represent (model) a data distribution?
It can be an optimization problem:

min L(paata, Pe)

*  Why parametric models?
They scale more efficiently with large dataset than non-

x/ ~Pdata .
=12 1D parametric models.

 datasetD
 data distribution pg4tq
e model parameters 8 € M



Data Representation
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* We want to learn a probability distribution p(x) over x
1. Generation (sampling): X,ew~p(X)

2. Density Estimation: p(x) high if X looks like a cat

3. Unsupervised Representation Learning:

Discovering the underlying structure from the data
distribution (e.g., ears, nose, eyes ...)
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Data Representation

* Recap: Challenges from Lecture 1

« Representation ability How to represent p(x)

For 1-D data x , the probability distribution p(x) is simple, e.g., Gaussian?
For high-dimensional data x = (x4, x5, ..., X5,),
how do we learn the joint distribution p(x4, x5, ..., X,)?

* Learning method

How do we measure and minimize the distance
between the estimated distribution p(x) and the real distribution p,:,?
we can now perform generative process and density estimation

* |Inference

How do we perform discriminative task?
i.e., invert the generative process
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Data Representation

* Less Parameters: Conditional Independence
* Less Parameters: Bayesian Network
* Naive Bayes Classifier
How to do inference * Discriminative vs. Generative Models
* Logistic Regression
{ * Deep Neural Networks
How to be better . .
* Continuous Variables

* Problem of High-dimensional Data
How to do representation
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* Problem of High-dimensional Data
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* How to represent the age distribution (age from 0 to 99)
p(z)
4
N (z|p,0%) = ! exp —i(:zt — 1)? age
S (2mo2)1/2 202 /
. In this case, we have 100 states
”: meacr; d deviati and we need 2 parameters to represent
a.z.stan- ard deviation the probability distribution p(x)
o “:variance
1 . .
b= —: precision U, o
= >

The probability of x to be this value
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Problem of High-dimensional Data

* How to represent a high-dimensional data x = (xq, X5, X3, ..., X3,)

In MNIST, an images have 28 * 28 * 1 = 784 binary values

,g SO.. how to represent p(xy, X3, ..., X7g4) ?
how many number of parameters?

784 random binary variables

y
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example from Stanford “deep generative models”
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Problem of High-dimensional Data

* How to represent a high-dimensional data x = (xq, X5, X3, ..., X3,)

(Bernoulli random variables)
As x can be either O or 1, i.e., only 2 states

28 (Joint distribution)
//\ The number of possible state for p(xy, x5, ..., x;,) is 2™
which is far larger than the number of data sample
We need a super-large memory to store p(xq, x5, ..., X;,)
28 even we have such large memory, we do not have enough data

to learn/model it
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* How to represent a high-dimensional data x = (xq, X5, X3, ..., X3,)

28

//\

28

784 random binary variables

p(xq1, X5, ..., X)) has 2™ states, then ...
How many number of parameters to model p(x4, x5, ..., X)) ?
Recap: Product Rule

p(xq,%2) = p(x)p(x2[x1)

p(xq,x3,x3) = p(xy, x2)p(x3]x1, x2) = px)p (22 [x1) P (X3]%1, X2)

[p(xlerJ v Xn) = p(x))p e X)) p(X3]xq, X5) o DOy | X4,ee0 xn—l)}

10
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Problem of High-dimensional Data

* How to represent a high-dimensional data x = (xq, X5, X3, ..., X3,)

[p(xlerJ ---;xn) = p(xl)p(lexl)p(x3 |x11 xZ) "'p(xnlxlr---r xn—l)}

28

//\ * p(x;1) need 1 parameter, the probability of x; to be 1 (as it is a binary variable)

* p(x,|x;) need 2 parameters, i.e., p(x,|x; = 0) and p(x,|x; = 1)

* p(x3]|xq,x,) need 4 parameters, i.e., p(x3|x; = 0,x, = 0), p(x3]x; = 0,x, = 1)
28 p(x3lx; = 1,x;, = 0), p(xzlx; = 1,x, = 1)

So ... The number of parameters to model p(x,, x5, ..., X,,) is:
[ 1+2+4+- 4201 =201

784 random binary variables

(when variables are binary)

11
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Problem of High-dimensional Data

* How to represent a high-dimensional data x = (xq, X5, X3, ..., X3,)

Product Rule:

28

P(x1»x2»~ v Xn) = p(x)p(x2|x1)p(x3|%1, X3) . DX | X1500e) Xp—q)

~

2" states 2™ — 1 parameters

— 1 is exponential,

784 random binary variables the product rule does not help to reduce the num of parameters

12
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Problem of High-dimensional Data

* How to represent a high-dimensional data x = (xq, X5, X3, ..., X3,)

In practice

1) The x can be continuous, i.e., infinite states
2) The number of x can be millions

For simplicity

We use binary x and MNIST for demo

13
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* Less Parameters: Conditional Independence

14
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Less Parameters: Conditional Independence

* How to reduce the number of parameter to represent p(xq, X5, ..., Xy) ?

Product Rule does not help:

28 p(xlerJ ---;xn) = p(xl)p(lexl)p(x3 |x11 xZ) "'p(xnlxlr---r xn—l)

N
— S~ e

2™ states 2™ — 1 parameters

28

784 random binary variables
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Less Parameters: Conditional Independence
* How to reduce the number of parameter to represent p(xq, X5, ..., Xy) ?

Recap: If variables x4, x5, are conditional independent given variable x5,
denotesas x; L x, | x3

p(x1,x2]x3) = p(xq|x3)p(x2]|x3)
If not independent:

p(x11x21x3) — p(x11x21x3) p(xZIxB)
p(x3) p(x2,x3)  p(x3)

p(xq,x3|x3) = = p(xq]|x2, x3)p(x2]x3)

so we can have p(x1|xz, x3)p(x2|x3) = p(x1|x3)p(xz|x3) if x4 L x5 | x3
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Less Parameters: Conditional Independence

* How to reduce the number of parameter to represent p(xq, X5, ..., Xy) ?

Given product rule: p(xq, X3, x3,x4) = p(x)p(x2|x1) 0 (x3|%1, x2)P (X4 | X1, X2, X3)

If x, L x5 | {xq1,x3}, we can simplify it as:
p(x1, X2, x3,%4) = p(x)p (2 [x1) 0 (x3[%1, x2) 0 (04| X179, x3)

If x5 L {xq1,x3} | x4, we can simplify it as:
p(x1, %3, x3,%4) = P(X4,X3,%X2,%1) = D(xg)0(x3|x4)P(X2]x3, Xx4)P(X1]|X2, X3, X4)
= p(x)p(x3lx ) p(x2|x3, Xx4) P (X1 Pz, X4)
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Less Parameters: Conditional Independence
* How to reduce the number of parameter to represent p(xq, X5, ..., Xy) ?

In an extreme case, if x;,1 L {x{,x,...X;_1} | X; ,i.e., the next variable only related to the
current variable (Markov model!)

p(x1, X2, %x3,%4) = p(x1)p(x2|x1)0(x3]x1, X2)P(X4]|X1, X2, X3)
= p(x)p (2 |x1)p(x3 k6, X2) P (X4 e, X3)
= p(x)p(xz]x)p(x3]x2) P (x4]%x3)

If x are binary variaV

2n — 1 parameters << 2™ — 1 parameters
So ...

if conditional independencies exist, the number of parameter can be reduced!!

18
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Less Parameters: Conditional Independence
* How to reduce the number of parameter to represent p(xq, X5, ..., Xy) ?

In a MORE extreme case, if x; are independent identical (lID)
p(xq, x5, x3,x4) = p(x)p(x2]x1)0(x3|%1, X2)P(x4]%1, X2, X3)
= p(x)p (X2 beg) p (23 Peraéa ) p (X4 ez
= p(x)p(x2)p(x3)D(x4)

However, in practice, there exists “relationship” between variables
the independence assumption is not practical...
e.g., the following random samples would not happen
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* Less Parameters: Bayesian Network

20
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Less Parameters: Bayesian Network
* Key idea:

Joint distribution: p(xq, X5, ..., X)) = p(x)p(xa|x)0(X3|X1, X2) .. (X1 | X150e) Xpp—1)

N
2™ — 1 parameters if x are binary variables

use conditional distribution instead of joint distribution to reduce the num of parameters

Bayesian network structure is a Directed Acyclic Graph, ¢ = (V, E)
where I/ means vertexes, E means edges

5 @ &

Directed Cycle Directed Acyclic Graph
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 Key idea:

Bayesian network structure is a Directed Acyclic Graph, ¢ = (V,E)

Joint distribution: p(xq, x5, x3,x4) = p(x1) p(x3]xq, X2)p(x4]|xq, X2, X3)

& o 98

Ifxipq L {00 093 | X
p(x1,%2,x3,%4) = p(x)p(x2lx)p(x3ber, X2)p (x4 e, Xx3)
= p(x1) p(x3lxz)p(xylx3)

@)

Less edges == Less parameters

22



Less Parameters: Bayesian Network

Example

d()
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Reference: Stanford “Deep Generative Models”
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p(d,i,g,s,1) = p(d)p(ild)p(gld, Dp(sld, i, g)p(|d, i, g,s)

According to the left Bayesian Net, we have the independencies:
dLli sl1{d, g} [1{d,is}
So that ..

p(d,i,g,s,1) = p(d)pDpgli,Dp(slip(lg)

23
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Less Parameters: Bayesian Network
« Bayesian Network structure is a Directed Acyclic Graph, G = (V,E)

* Bayesian Network is given by (G, P),
where P is a set of local conditional probability distributions for each node/vertex of G

 Compute the P using data samples to “learn” the Bayesian Network

e Bayesian Network is also known as Belief Network and Bayes Network
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* Naive Bayes Classifier

25



Naive Bayes Classifier
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How Bayesian Network performs inferencing? i.e., discriminative tasks?

Support we have a binary classification problem, label y = 0, 1, features X = (x4, x5, X3, X4)

The probability distribution is p(y, x1, x5, X3, X4)

Naive Bayes Classifier assume that[xi 1 x_i|y} , SO that:

&é-&

Generative
Bayesian Network

e

Generative
Naive Bayes

Given Naive Bayes Assumption:

[p(y, X1,%2,%3,%4) = p(Y)p(x1|y)P (22 |y) p(xsly)}
\ |
\ Y ,

p(x|y)
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Naive Bayes Classifier

pxy) _p»pX|y)
p(X) p(x)

pOIx) = «pIp(xly) |

y = arg maxp(y|x) = arg max 2%
y

ax=" 0 =arg maxp(y)p(x|y

Given Naive Bayes Assumption:

p(X[y) = p(x1[y)p(x2|y) p(x3]y)

27



Naive Bayes Classifier

* Given p(X|y) = p(x1]|y)p(x2]y) p(x3]y), how to compute p(Y[X)?

First, we can estimate the parameters from the training set:

NELE TS
78998

x1=0 x1=1 x2:0 szl x3:O x3:1 X4:O X4:1
y=0 3 5 2 0 8 7 4
y=1 1 0 3 10 7 4 2 5
34+5+5+2+8+7+4

* p(Y =0) =
¢ p(x1=0|Y=0)=

(3+5+54+24+84+7+4)+(1+3+10+7+4+2+5)

3

3+5+5+2+8+7+4

* Second, predict the probability of a label given an input with Bayes rule:

p(Y=0) [T{=, p(x;|]Y=0)

* p(Y = 0]xq,xp,x3,%x4) =

Zy={0,1} p(Y=y) H?:l p(xilY:y)

PEKING UNIVERSITY
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Naive Bayes Classifier
* Limitation

Are the independence assumptions reasonable ??

Generative Generative

Bayesian Network K Naive Bayes j

29



PPN »
NELF TS

PEKING UNIVERSITY

* Discriminative vs. Generative Models

30
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Discriminative vs. Generative Models
. — Symmetry property p(X,Y) =p(Y,X)

* Given p(Y,X) =pXI[Y)p(Y) =p|X)p(X)

« Discriminative: X = Y, we only need to estimate the conditional distribution P(Y|X)
without learning to model P(X)
simply input X then output Y

* Generative: Y — X, we need both P(Y) and P(X|Y) to compute p(Y|X) via Bayes

(see the Naive Bayes Classifier as an example)
D, (X)

31
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Discriminative vs. Generative Models

* Given arandom vector X = (x4, X», ..., X, ), the product rules can give us:

p(y,x) = p(Wp(x1[yV)p(x2ly, x1) . (X ly, X1, X250y Xn—1)
P(}’; X) = p(xl)p(lexl)p(xglxl,xz) PV X1, X2, xn—l)

generative o _
p(y) is simple to estimate

but how to parametrize p(x;|y, x1,...,X;—1)?

discriminative .
only need to parametrize p(y|x1,...,Xn—1)




Discriminative vs. Generative Models
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parametrize p(x;|y, x1,...,X;—1) without independent assumptions

.

Naive Bayes

/

AN
i

parametrize p(x;|y, x1,...,x;—1) With independent assumptions

IA\

&é-&

Logistic Regression

NEXT

33
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* Logistic Regression

34
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Logistic Regression

e Parameterize the p(Y|X) without independence assumptions

only need to parametrize p(y|x4,...,Xp—1)

&é-&

Logistic Regression

35
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Logistic Regression

* (only need to) parameterize the p(Y|X) without independence assumptions

[p(Y = 1|x,w,b) = f(x,w,b)}

_ Z =XxX;W; +X,W, + xsw3+ b
input layer  output layer

X1 W1
© <[] =l
wq X3 w3
OO
w z=wx+b

blaS Z = [Wl W2 W3]

36
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Logistic Regression

* (only need to) parameterize the p(Y|X) without independence assumptions

Z =XW;+Xx,W, +x;w;+ b
input layer output layer
0,if z<0

Binary classification: 'y = { Lifz>0

a Data samples with three features (x4, x,, x3)
@ The decision boundary is a surface forz = 0
e The decision boundary can be shifted

left or right via the bias

:xl

The decision boundary must cross the origin if no bias ! Wi .
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Logistic Regression

* (only need to) parameterize the p(Y|X) without independence assumptions

[p(Y = 1|x,w,b) = f(x,w,b)}

_ Z=WIxX+b . .
input layer  output layer Sigmoid/Logistic function

’ Sigmoid f(z)A/
[ p(Y = 1|x,w,b) = o(W'x + D) } )

Y

o(2) = 1+e2

38
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Logistic Regression
* Logistic regression does not require independence assumptions x; L X_;, like Naive Bayes
* Example, in spam classification, X; = 1[“bank” exists] and X, = 1[“account” exists]
If “bank” and “account” always appear together,
Naive Bayes will count this evidence twice, p(X{|Y) = p(X,|Y)

Logistic regressive can set either w; or w, to zero to ignore one of it!!

Reference: Stanford “Deep Generative Models”
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Logistic Regression
* Discriminative model is powerful, so what is the advantage of generative model?

* Discriminative models p(Y|X) require all X are observed,
fail to work if some inputs are missing!

p(Y.X)  pMpX|Y)

when some input are unobserved, still allow us to compute p(Y|X)
e.g., Naive Bayes

* Generative models p(Y|X) =

x1:0 x1=1 x2=0 szl x3:0 x3:1 x4_:0 x4:1
y=0 5 5 2 0 7 4
y=1 1 0 3 10 7 2 5
3+5+54+2+8+7+4
) p(Y:O):

3+5+5+2+8+7+4

(3+5+5+2+8+7+4)+(1+3+10+7+4+2+5)
* px; =0|Y=0) =
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* Deep Neural Networks

41
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Deep Neural Network
* Logistic regression parameterizes the p(Y|X) without independence assumptions
p(Y =1|x,w,b) = f(x,W, D)

but logistic regression is a linear dependence (between input and output)
which might be too simple

Non-linear dependence is better ...

pNeural(Y — 1|X; 6) — f(x; 6)

42
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Deep Neural Network

More parameters and layers, better representation capacity ...

input layer hidden layer 1 hidden layer 2 hidden layer 3 output layer

More powerful than logistic regression

43
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Deep Neural Network

* Naive Bayes
p(x1,x2,x3,x4) = p(x)p(x2]x1)0(x3]|%1, X2)P(X4]%1, X2, X3)
~ p(x)p(x2x)p (X3 b, x2)p (X4 e, X3)
~ p(x)p(x2[x)p(x3]x2)D(x4]X3)

 Deep Neural Network
p(x1,%x2,%3,%4) = p(x)p(x2]x1)0(x3]|%1, X2) P (X4]%1, X2, X3)
=~ p(x)p (X2 1) Prewrar(X3]%1, X2)PN erat (X4 1%, X2, x3)

44
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* Continuous Variables

45



Continuous Variables

* Discrete Variables
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The below examples both use discrete variables, but there are many variables are continuous!
e.g., age, height ...

28

//\

784 random binary variables

28

d’ d!
0.6 | 0.4
Intelligence
(Grade >
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[0 II
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0.8
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Continuous Variables
* Represent Continuous Variables

If x is a continuous variable, we can represent it with its probability density function (PDF)
instead of a table anymore ..

47
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Continuous Variables
* Represent Continuous Variables

Consider x is a random float-point variable to represent “age”,
we can use 1-D Gaussian to parameterized the density.

1 1
N(alu, o) N (zln,0®) = 2ron)172 P {—ﬁ(ft — u)z}

A N(z|p, o) >0

U: mean
o: standard deviation
o?: variance

7'

v

1 . .
: b= —: precision

48
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Continuous Variables
* Represent Continuous Variables

Consider X is a random float-point vector to represent “age”, “height”, “weight” .....
it can be a joint probability density function
we can use D-dimensional Gaussian to parameterize it
(a.k.a Multivariable Gaussian)

1

rof 1 1 Tx—1
N(X‘”’E): (27T)D/2 ’2‘1/2 exp —g(x_ﬂ) > (X_l'l’)

u is called the mean, the D x D matrix
Y is called the covariance
|2| denotes the determinant of X

€I

49
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Continuous Variables

* Represent Continuous Variables

n  u

Consider X is a random float-point vector to represent “age”, “height”, “weight” .....

50
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Data Representation

* Less Parameters: Conditional Independence
* Less Parameters: Bayesian Network
* Naive Bayes Classifier
How to do inference * Discriminative vs. Generative Models
* Logistic Regression
{ * Deep Neural Networks
How to be better . .
* Continuous Variables

* Problem of High-dimensional Data
How to do representation
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Thanks

52



