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So far

* GAN is a couple of Generator and Discriminator; its training process is a min-max
game as follows:

. mGjn max V(D,G) = mGin max Ex~pyg ll0gD(x)] + E,.p [log(1 — D(G(2))]

* Theoretical guarantee: This min-max game has a global optimum for p, = pPaata
* However there remains some fundamental problems of GAN training.

* Note that when we say “manifold P” where P is indeed a probability distribution, we
actually refer to the support set of distribution P.

e This lecture: Towards a solid understanding of GAN training.
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Understanding Generative Adversarial Networks

* Solid Understanding of GAN Training

oroblems: what and why ®  Improved Technique for Generator Loss
background knowledge e Fyndamental Problems of Two Types of GAN

| t' . .
>ome solutions e Wasserstein Distance
* A Temporal Solution
a super solution ¢ \Nasserstein GAN
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* Solid Understanding of GAN Training
* Improved Technique for Generator Loss
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* Improved Technique for Generator Loss

 Vanilla Generator Loss:

* Given mGin max V(D,G) = mGjn max Ey~pyge, 108D (x)] + E,p [log(1 — D(G(2))]

* If we deduce L and L directly from min-max equation, then we get:

* Lp=—Eyp,., [logD(x)] — E,p [log(l — D(G(2)))]

*| L = E;p [log(1 — D(G(2)))] (Vanilla GAN)

* In early training stage: Vanishing Gradient

* D is easy to distinguish generated sample G(z) from real images x
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* Improved Technique for Generator Loss

* Improved Generator Loss:
* |f we deduce L. directly from min-max equation, then we get:
* L =E;p [log(1l—D(G(2)))] (Vanilla GAN)

* Known |Vlog(x) | = |;16| is significantly larger than |[V1og(1 — x) | = |x—i1 |

* Itisthesame: L;' = —E,_, [log(D(G(2)))] (Improved GAN)
* Minimising L' is equivalent to minimise L. , while providing larger gradient for
the generator in early stage training.
G = max Ez-p, llog D(G(2))]

= m(i;n Ez-p, [log(1 — D(G(2)))]

e Also have

mGjn max V(D,G) = mGin max Ey~pyye 108D (x)] + E,p [log(1 —D(G(2))]

6
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* Fundamental Problems of Two Types of GAN
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Fundamental Problems of Two Types of GAN

* In the following slides, we denote GAN with improved generator loss as Improved GAN.

* Then we claim that these two types of GAN suffer from some fundamental problems
respectively:

* Vanilla GAN: Vanishing Gradient

* Improved GAN: Mode collapse and Oscillations
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Fundamental Problems of Two Types of GAN

* Vanilla GAN: Vanishing Gradient

* An Empirical Observation v.s. Theoretical Induction:
 What would happen if we just train D till converge?
 Theoretically:

Gradient of the generator with the original cost

— After 1 epoch
After 10 epochs

D* = Pdata o ;\
Pg t Pdata h

* Lg = —log4 + 2]S(pdata||pg)

R s R I

—— After 25 epochs

1if x sampled from F,

i ZLG=O

1000 1500 2000 2
Training iterations

* 3.V E,p [log(1 —D*(G(2)))] = 0 (Gradient Vanishing)



Fundamental Problems of Two Types of GAN

* Vanilla GAN: Vanishing Gradient

Based on empirical observations, we can intuitively thinking:

In what case can we classify two manifolds totally?

Two manifolds can be separated?

Consider the extreme case:
* When support sets of P, F; can be separated:

* Thenforany x € B. U F, there're only 2 cases:

* In both case the]S(Pr||Pg) =2 *—; * log2 = log?2
* SolLg =2JS(P||P,) — log4 =0

* 1L.B(x)=0,FPx)#0
* 2P(x)#0,P(x)=0
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Fundamental Problems of Two Types of GAN
* Vanilla GAN: Vanishing Gradient

* Under the assumption that P. and F,; can be separated, we can explain the reason.

e But why?

* Firstly, it’s reasonable to assume that B and F,; are low-dimension manifolds.

* Lemmal. Let g : Z — X be a function composed by affine transformations and pointwise nonlin-
earities, which can either be rectifiers, leaky rectifiers, or smooth strictly increasing functions (such
as the sigmoid, tanh, softplus, etc). Then, g(2) is contained in a countable union of manifolds of
dimension at most dim Z. Therefore, if the dimension of Z is less than the one of X, g(Z) will be a
set of measure 0 in X.

* So Py is low-dimension manifold.

* There is strong.
* empirical and theoretical evidence to believe that P. is indeed extremely concentrated on

a low dimensional manifold



ST »
e I O
7598%

PEKING UNIVERSITY

Fundamental Problems of Two Types of GAN
* Vanilla GAN: Vanishing Gradient

* Intuitively, when P. and F,; are both low-dimensional, then they have “nearly no
intersection” with a probability of 1.
* The following lemma claim the same idea.

* Lemma 2. Let M and P be two regular submanifolds of R? that don’t have full dimension. Let 1), 1/
be arbitrary independent continuous random variables. We therefore define the perturbed manifolds

as M =M+nand P =P +1n'. Then

Py, (M does not perfectly align with 75) =1
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Fundamental Problems of Two Types of GAN
* Vanilla GAN: Vanishing Gradient

* Further, if the 2" order Lipschitz factor of the generator function is bounded, then as
discriminator updates closer to the optimum, the generator’s gradients vanishes.

* The following lemma claim the same idea.

e Theorem 2.4 (Vanishing gradients on the generator). Let gy : Z — X be a differentiable func-
tion that induces a distribution P,. Let P, be the real data distribution. Let D be a differen-
tiable discriminator. If the conditions of Theorems 2.1 or|2.2| are satisfied, | D — D*|| < ¢ and
K. p(z) [||.]ggg(:)||%] < M?, rlwn

€

IVoE. <pz)[log(1 — D(ge(2)))]]l2 < ﬂ[l —

e So far, all below questions are answered.

1D () {O if x sampled from P.
e 1.D"(x)=1,.

1if x sampled from F,
* 2. LG - O

* 3.WE, ., [log(1 —D*(G(2)))] = 0 (Gradient Vanishing)
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Improved GAN: Oscillations

e Just as last section, we analyze the case when D is trained to optimum:

* LLp = Ex_p|log(D*(x))] + Ex-p,|log(1 — D*(x))] = 2JS(B||P;) — log4

Pg
P +Pr 1_D*(x)
Pg+Pr

— x~Pg[1 —D"(x)] — Ex~Pg [D*(x)]
* Then implied by 1. 2. :

e L; = ExNPg[—logD*(x)] = KL(F||P) — Ex-p,log(1— D*(x)) [implied by 2.]

= KL(F||P) — 2]JS(Fyl|P-) + log4 + Ex..p.logD*(x) [implied by 1.]
* min Lg = min KL(P,||P.) — 2JS(F,||P)
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Fundamental Problems of Two Types of GAN

* Improved GAN: Oscillations

* minL; = min KL(F,||P.) — 2]S(F||B)
* Rediculous? Note that if we want to minimize L, then we are “pulling”
P. and P, closer and farther at the same time
* This leads to the gradient oscillations

0 20 40 60 80 100
Iterations
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Improved GAN:

IVeL(D. gs)|

Mode Collapse

Gradient of the generator with the — log D cost

120

T T T T

— After 1 epoch
—— After 10 epochs
100 -l —  After 25 epochs

60

40

( | | | | | |
](l 1000 2000 3000 4000 5000 6000 7000
Training iterations
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Fundamental Problems of Two Types of GAN

* Improved GAN: Mode Collapse

min Lg = min KL(F,||P.) — 2JS(F||P)

x)
© KL(BIP) = [ By(x)log ™
P,(x) — 0, P.(x) > 0, lack of “diversity” A D Pr
Lrl Pﬁ'a u Pj
* ii. Pj(x) > 0,B.(x) — 0, generate “fake” image [

/\ i
70N _sFy B
* Obviously, KL “punishes” type ii. more than type i. 4 Q/a e Pr =0

/.

2\ \




Fundamental Problems of Two Types of GAN

* Improved GAN:

Mode Collapse

* minL; = min KL(F,||P.) — 2]S(F||B)

* Further, to minimize —2JS(F;||P.), error i. is “encouraged” to be more severe.
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Fundamental Problems of Two Types of GAN

* Improved GAN: Mode Collapse
e minlL; = min KL(Pg||Pr) — 2]S(Pg||Pr)

* Mode collapse examples ...

-
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Fundamental Problems of Two Types of GAN

* Vanilla GAN: Vanishing Gradient

* Improved GAN: Mode collapse and Oscillations
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e \Wasserstein Distance background for Wassertein GAN

21
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* As we seen, the fundamental problem of (vanilla) GAN is due to the defects of JSD. Now
we introduce a new distance.

e W(P.||IP,) = inf E - —
(Pl g) ye]_lg’lg,Pr) (x,y) y[”x vl

where [[(Pr, Pg) denotes all possible joints distributions that have marginals P, and P,
* Wasserstein distance also goes by “earth mover’s distance”, the amount of “dirt” that
needs to be moved to transport one distribution to the other.

.......

g 6+6+6+6+2x9=42) 2igigi1o
Al isesin
P2 & 6|3 111i0370i 2
&“?- ----E‘~----~§ .................. ; ......... g ......... 5, .......... Joint distribution
i1i4i6 14|52 Yiizloltlolo

1 2 3 7 8 9 10 3|l oioiz2io
"""" B6+6+6+8+9+7=42) : :

3 7i8i9i10
Naarl 2|3 1 l1i0i1iq .
S SR b T | b S gy jorsenssa Joint distribution
ERT 185 1| 4 6 TR}
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Wasserstein Distance

23



P »
NELFES

PEKING UNIVERSITY

Wasserstein Distance

X
) +oo ifO#0
KLPP) = { ¢ Ho7 0 . .
~ Jlog2 if60F#0
| A B
WPIQ) = inf Euyylllx—ylll=16] | Ty
vell(P.Q)

 W-distance is “better” than JSD, and JSD is “better ” than KLD.
* W-distance is a better way to measure the distance between two distributions when
their support sets hardly have intersection. 24
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* A Temporal Solution

25



A Temporal Solution: Before Wasserstein GAN
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e Considering how to solve the gradient vanishing problem of Vanilla GAN
* The problem comes from their having “nearly no intersection”, due to low-dimension.
* Idea: Add a “e-ball ” to each point in manifold, then a low-dimensional manifold

“level-up” to full-dimensional manifold!

* Method: Add a random vector with mean 0 and variance € to each point of P. and F;

/\

/\

%

%

26
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A Temporal Solution: Before Wasserstein GAN

* Relationship with Wasserstein distance

* Let P, and Py, . denote the resulting manifolds respectively. Then by
bounding the € and JS(Pr¢||Py+e), we can bound W (F; | |Pg):

Theorem 3.3. Let P and P, be any two distributions, and € be a random vector with mean 0 and
variance V. If Pric and Py have support contained on a ball of diameter C, r/wnﬁ

W (B, By) < 2VE 420, /IS Do [Pyro) ©)

27
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 Wasserstein GAN

28
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Wasserstein GAN

* Kantorovich-Rubinstein duality

* Now we attempt to design a method to minimize the W-distance between P- and Fj

« W(PI|B) = inf |Egpyplllx =l

vell(PrPy)

Obviously, calculating the above estimation is an intractable problem.

29
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Wasserstein GAN

* Kantorovich-Rubinstein duality

* Now we attempt to design a method to minimize the W-distance between P- and Fj

e Kantorovich-Rubinstein duality:

. W(PIIP)——||rr|1|ax Exp,f (%) — Ex_p,f (%)

* For function f, ||f||L denotes its Lipschitz-constant.

30
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Wasserstein GAN

* Lipschitz Continuity

* In particular, a real-valued function f: R™ — R is called Lipschitz continuous if there
exists a positive real constant K such that, for all x{,x, € R™:

+ 1 G = fO)] < K|lxy = x|

e If a function is derivable and its gradient is bounded

* Thenitis Lipschitz continuous /o
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Wasserstein GAN

* Lipschitz Continuity

* Further, consider two functions f;, f, are both Lipschitz continuous, say with constants
L1, L, ,then the composition is also Lipschitz:

- NIA(R®) = AL < LilfG) = L0 < LiLyllx - yi)

* Soif a neural network is composed of layers that Lipschitz continuous, then the network
is Lipschitz continuous.
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Wasserstein GAN

e Wasserstein GAN

* Now we introduce our new objective

* To minimize W (P, ||P ) == ||m|ax Ey-p f(x)— Ex-p,f(x)

e Equivalent to mgn W (P||P. ) = mln“;rll'ax Ex-p f(x)— Ex~p,f(x)

* Equivalent to mén W (P. ||P ) = mén“rrhax Ey-p.D(x) — Ex~p, D(x)
D

33
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Wasserstein GAN

e Wasserstein GAN

* How to optimize this objective: mén W (P,| |Pg) = mén“nhax Ey-p.D(x) — Ex~p,D(x)
D||, <K

* First step, fix G update D: max E,_p D(x) — E,_p D(x)
IDI|, <k r g

* Second step, fix D update G: ménIExNPrD(x) — IExNPgD(x)
* Obviously, the key is the first step: maximize E,_p D(x) — IExNPgD(x), while
keeping the condition that ||D||L <K



5
ey e 7S Z

PEKING UNIVERSITY

Wasserstein GAN

e Wasserstein GAN

* Idea: Updating D with E,..p D(x) — IEx~pgD(x), then clip every weight in D to [—c, c]
where cis a constante.g.c =1

» After clipping, as each weight in D’s each layer is bounded, then there’s theorem
claim that each layer is Lipschitz continuous.

e Since each layer of D is Lipschitz continuous, then there always exists a K, such that
IfI], <K
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Wasserstein GAN

e Wasserstein GAN

e Algorithm:
* 1.Sample a batch{xy, x, ... x,}, {21, 2, ... Z,,}

« 2.fix G, update D with objective: mDaxIEx~prD(x) — IEx~PgD(x)

 3.Clip every weight of D to [-1, 1]
« 4. fix D, update G with objective: mén Ey~p.D(x) — Ex~p,D(x)

1

* Note that, we estimates IExNPgD(x) ~—

1
1 D(G(2)), Ex-p,D(x) %5 Biy D (%)
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Wasserstein GAN

* So..WGAN is all you need?
* |In practice ...

* LSGAN, WGAN-GP ...

37
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Summary: Understanding GANs

* Solid Understanding of GAN Training
* Improved Technique for Generator Loss
 Fundamental Problems of Two Types of GAN
* Wasserstein Distance
* A Temporal Solution

* Wasserstein GAN
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Thanks

39



