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Where we are?

* Product Rule
p(xX1, %2, o, X)) = p(x )P | X)) D (X31%1, X2) oo DX | X1 ,00es Xp_q)

e Autoregressive Models
P(Xl,xz, '"an) = p(xl)p(lexl)p(x3|xlr x2) '"p(xnlxli---/ xn—l)

e Variational Autoencoders
p(X) =Xz p(X|Z)p(Z)

* Normalising Flow Models

p(xq1, X9, e, Xpy) = n(z)|det(]f1‘)| =1(z) !

det(Jy)

e All the above methods are based on Maximising Likelihoods

* |sthe likelihood a good way to measure the distance between TWO distributions? >
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Vanilla Generative Adversarial Network

* Background
e Distribution, Manifold, Measure
* Divergences
e Rethinking MLE-based Methods
GAN: Vanilla GAN
DCGAN: Deep Convolutional GAN
e Adversarial Loss vs. MISE
* Challenges of GAN
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* Background
e Distribution, Manifold, Measure
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Distribution & Manifolds

 Manifold: In mathematics, a manifold is a topological space that locally resembles
Euclidean space near each point.

3
7.
W rrest
1
!
1!
V

2-D manifold in 3-D space 3-D manifold in 3-D space

* Recap: In lecture of flow-based model:

Normal 121€9)

Distribution

&

(z ‘
(2) | as close as possible

The support set of

pdata(xl; X2, ... xn) isa
manifold in n-D space

generator

G G
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Measure
Measure is an extension of the concept of length, area and volume in high dimensional
space, which can be understood as "Supervolume”

 Examples:
e 2-d manifold in 3-D space, measure =0 <-> 2-d surface in 2-d space, measure is its area

A
X

:f

w;‘
X A
1
: y
| ‘»f" ) Y

« S = {x|xis rational number Ax € [0,1]}, then measure of Sin R1is0

v
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* Background

* Divergences
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Some Other Divergences

* There’re many other estimations that measure “distance” between two distributions.
P
+ KL(P|IQ) = Ep[log(®)]

KLo(P[|Q) = KL(P||laP + (1 = a)Q)

P+Q P+Q

JS(PIIQ) = S KL(P|I52) ++5 KL(QII20) =5 KLos(PI1Q) +- KLos(Q1P)

W(PIlQ) = Y~ ll_lr%If’,Q) E(x,y)~y[|x -yl

D(PIIQ) = Ep[f (D1, if £ (¢) = ~logt, Dy = KL

* Can we take other divergence as objective?
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* Background

e Rethinking MLE-based Methods
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Rethinking MLE-based Methods

* MLE-based methods essentially minimize the KL-divergence of B and F,
* Let B and P, denote real data distribution and generated distribution
respectively

min KL(P:||Py) = min Ep_ [log (%)] = min —Epr[long] = max Epr[long]
g

* Recall that KL(PT||Pg) reaches its minimum when P. = F;, which implies that
MLE-based methods essentially minimize the “distance” between P- and Fy.

* Autoregressive models and Flow-based models directly optimize MLE
* VAE optimises a lower bound of MLE

 Any other “distances”?
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e GAN: Vanilla GAN

11
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Vanilla GAN - Intro

e Starts from the intuition of min-max game:

12
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Vanilla GAN - Intro

X
_—] T~ O
.
¢ P O
—_| | Q
©
Normal/uniferm Unidirectional Mapping

distribution el
Adversarial Learning: map a distribution to another distribution

Lp=—Exp,,..1108DX)]—|E,p [log(l — D(G(z))):

L= |Ezp |log(1 — D(G(2)))]
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Vanilla GAN - Intro

G = mGin E;-p, [log(1 — D(G(2)))]

D "= max Eyp,,,,[10g D(0)] + Eyp, [log(1 — D(G(2)))]

m1n max V(D,G) = m1n max Ex~pyq, 108D (X)] + Ezep, [log(1 — D(G(2)))]

Why optimising this objective can work?
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Vanilla GAN - Theoretical Results
* We claim that this min-max game has a global optimum for p; = Paata

Pdata
Pg t+ Pdata

* First, we claim that for G fixed, the optimum D* =

* Then for D* fixed, V(G,D) = —log4 +]S(pdata||pg)

* Thus, when D and G are optimal, pgaeq = Py
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Vanilla GAN - Theoretical Results

* Dive into the Objective

. mGjn max V(D,G) = mGin max Ex~paaca 108 D (0)] + E5p, [log(1 — D(G(2)))]

* When z~p(2), let psdenote distribution of G (z2)

. mGjn max V(D,G) = mGin max Ex~pyoe, 108D (X)] + Ex~p, [log(1 — D(x)]
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Vanilla GAN - Theoretical Results

* First, we claim that for G fixed

V(G, D) = / Paaa (@) log(D())dz + / p=(2)log(1 — D(g(2)))dz

T z

= / Pdaa () log(D(x)) + py(x) log(1 — D(x))dx

€T

Pdata . Py

D(x) 1-D&) 0

V(G,D) =

Pdata
Pg t+ Pdata

* The optimum|D™ =
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Vanilla GAN - Theoretical Results

* Then for D™ fixed
C(G) = n{gx V(G, D)

:Em’\’pdulu [log Dg(m)] + IEszz [log(l - DE(G(’Z)))]
:Ew'\’pdulu []'Og DZ‘ (w)] + Ew'\‘])g [log(l - Dz_; (m))]

, pdala(w) ] [ pg(w)
=Egrpy. |l0g + Exnp, |log
L~ P © Pdata(m) + pg(w) eba 7 pdala(w) + pg(w)

+ Recap JS(P|Q) =5 KL(P||52) +- KL(Q|| %

* ThenV(G,D) = —log4 + 2]/S(Paatallpg)
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Vanilla GAN - Training Algorithm

* Loop for: Sample a batch{z;}{x;} -> updating D -> updating G

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(), ..., 2™} from noise prior p,(2).
e Sample minibatch of m examples {z!),..., (™)} from data generating distribution
pdala(33)~

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [0 D () +10g (1 - D (G (=)))].

o

end for
e Sample minibatch of m noise samples {z(}), ... z(™} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

s

vgg% ;log (1-p(c(29))).

Why not updating D to its optimum first?
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Vanilla GAN - Theoretical Results

711800071 N

The discriminator is unable to differentiate between the two distributions, i.e. D(x) =1
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Vanilla GAN - Experiments
« MNIST and TFD

* Random sample

INI ST SRS SISISISISHZI712:212 721717171/



ez ) ¥

PEKING UNIVERSITY

Vanilla GAN - Experiments
* CIFAR10

Fully connected model

Can we get better performance?

22



o\'N:,,‘._ »
NELFES

PEKING UNIVERSITY

 DCGAN: Deep Convolutional GAN

23



Deep Convolutional GAN (DCGAN)

e Using the Power of Convolutional Nets

Generator : from a prior distribution to an image distribution

Normal distribution as
the latent distribution
z = 100 values

s 3 X Stride 2|

CONV 3 64

CONV 4 -
/ -

Data distribution
X = 64x64x3 values

N ezt ¥
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Deep Convolutional GAN (DCGAN)

* GAN is difficult to train: 1. small G gradient if D is good. 2. oscillation

 DCGAN tricks
e 1. Batch normalisation on all layers except the final layer of G and input layer of D,
with a decay of 0.9

2. Adam optimiser with a 15t order momentum (betal) of 0.5

3. Leaky RelLU with an alpha of 0.2

4. Strided convolutions

5. Learning rate of 0.0002
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Deep Convolutional GAN (DCGAN)

* Latent Representation

Interpolation: (1 — @)z, + az,
Noise vector z4 » Noise vector z,
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Deep Convolutional GAN (DCGAN)

* Latent Representation

man man woman

with glasses without glasses without glasses woman with glasses

>
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e Adversarial Loss vs. MISE

28
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Adversarial Loss vs. MSE

* Limitation of mean squared error

Input Reconstruction

An autoencoder trained with mean squared error for a robotics task has failed to reconstruct a ping pong ball.

example from “deep learning” lan Goodfellow ...
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Adversarial Loss vs. MSE

Ground Truth MSE Adversarial

(Center) Image produced by a predictive generative network trained with mean squared error
alone. Because the ears do not cause an extreme difference in brightness compared to the
neighboring skin, they were not sufficiently salient for the model to learn to represent them.

(Right) Image produced by a model trained with a combination of mean squared error and
adversarial loss. Using this learned cost function, the ears are salient because they follow a
predictable pattern.

example from “deep learning” lan Goodfellow ...
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Adversarial Loss vs. MSE

* Some impressive samples of GAN, compared with other generative models:

Style-GAN 2019 DFC-VAE
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* Challenges of GAN

32
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Challenges of GAN

* Density Estimation

* Autoregressive Models: p(xq1, X5, ..., X)) = p(x1)p(x2|x1) ... (x| X1,00e) Xp—1)
1 .
* VAE:p(xq1,%x3, ... Xp) = E; p»)|P(x]|2)] R K P(xl2),21,25 ... 2k ~i.i.d. P(2)
1
* Flow:p(xq, %5, ..., Xy) = n(z)|det(]f—1)| =1(z) 2ot )
« Then we can estimate the density function of p(xq, x5, ... X5,)
* Application: Detect missing mode
 |If foraninstance x’, p(x) = 0, then x’ is probably a missing mode

* GAN cannot estimate the density function of p(x), so GAN is called implicit image
model. AR, VAE, Flow are called explicit image models
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Challenges of GAN

* Inferring Latent Representation

Data Space Latent Space Data Space Latent Space
X N(0,1) X N(0,1)

?
000666

@9
Q0000

Bidirectional Mapping Unidirectional Mapping
VAE GAN 34
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Summary: Vanilla GAN

What is support set? What is manifold?

Why min-max work?

Why adversarial loss > MSE for image quality?
Limitations of vanilla GAN?

Why DCGAN tricks work?

Compared with Autoregressive Models, VAE and Normalising Flow Models.
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Thanks

36



