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Where we are?

• Product Rule
𝑝 𝑥!, 𝑥", … , 𝑥# = 𝑝 𝑥! 𝑝 𝑥" 𝑥! 𝑝(𝑥$|𝑥!, 𝑥")…𝑝(𝑥#|𝑥!,…, 𝑥#%!)

• Autoregressive Models
𝑝 𝑥!, 𝑥", … , 𝑥# = 𝑝 𝑥! 𝑝 𝑥" 𝑥! 𝑝(𝑥$|𝑥!, 𝑥")…𝑝(𝑥#|𝑥!,…, 𝑥#%!)

• Variational Autoencoders
𝑝 𝑋 = ∑& 𝑝 𝑋 𝑍 𝑝(𝑍)

• Normalising Flow Models

𝑝 𝑥!, 𝑥", … , 𝑥# = 𝜋 𝒛 𝑑𝑒𝑡 𝐽$!" = 𝜋 𝒛 !
%&' ('

• All the above methods are based on Maximising Likelihoods

• Is the likelihood a good way to measure the distance between TWO distributions? 2

min
)∈ℳ

ℒ(𝑝%,',, 𝑝))
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Distribution & Manifolds
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• Manifold: In mathematics, a manifold is a topological space that locally resembles 
Euclidean space near each point.

• Recap: In lecture of flow-based model:

2-D manifold in 3-D space 3-D manifold in 3-D space

The support set of 
𝒑𝒅𝒂𝒕𝒂 𝒙𝟏, 𝒙𝟐, … 𝒙𝒏 is a
manifold in n-D space 



Measure
• Measure is an extension of the concept of length, area and volume in high dimensional 

space, which can be understood as "Supervolume“

• Examples:
• 2-d manifold in 3-D space, measure = 0   <->  2-d surface in 2-d space, measure is its area

• 𝑆 = {𝑥|𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 ⋀ 𝑥 ∈ [0,1]}, then measure of S in ℛ! is 0
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Some Other Divergences
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• There’re many other estimations that measure “distance” between two distributions.
• 𝐾𝐿(𝑃| 𝑄 = 𝐸1[log(

1
2
)]

• 𝐾𝐿3(𝑃||𝑄) = 𝐾𝐿(𝑃||𝛼𝑃 + 1 − 𝛼 𝑄)

• 𝐽𝑆(𝑃| 𝑄 = !
"
𝐾𝐿(𝑃|| 142

"
) + !

"
𝐾𝐿(𝑄|| 142

"
) = !

"
𝐾𝐿5.7(𝑃| 𝑄 + !

"
𝐾𝐿5.7(𝑄| 𝑃

• 𝑊(𝑃| 𝑄 = inf
8~ ∏(1,2)

𝐸 =,> ~8[|𝑥 − 𝑦|]

• 𝐷$(𝑃| 𝑄 = 𝐸1[𝑓(
1
2
)], if 𝑓 𝑡 = −𝑙𝑜𝑔𝑡, 𝐷$ = 𝐾𝐿

• Can we take other divergence as objective?
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Rethinking MLE-based Methods
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• MLE-based methods essentially minimize the KL-divergence of 𝑃? and 𝑃@
• Let 𝑃? and 𝑃@ denote real data distribution and generated distribution 

respectively

min𝐾𝐿(𝑃?||𝑃@) = min 𝐸1( log 1(
1)

= min−𝐸1( 𝑙𝑜𝑔𝑃@ = max 𝐸1( 𝑙𝑜𝑔𝑃@
• Recall that 𝐾𝐿(𝑃?| 𝑃@ reaches its minimum when 𝑃? = 𝑃@, which implies that 

MLE-based methods essentially minimize the “distance” between 𝑃? and 𝑃@.

• Autoregressive models and Flow-based models directly optimize MLE

• VAE optimises a lower bound of MLE

• Any other “distances”?
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Vanilla GAN - Intro
• Starts from the intuition of min-max game:

p(X) pdata



A𝑿

X

fake

real
Z 

Normal/uniform
distribution

Adversarial Learning: map a distribution to another distribution

ℒ ' = − 𝔼𝒙~*!"#" log 𝐷(𝒙) − 𝔼𝒛~*$ log(1 − 𝐷 𝐺 𝒛 )

ℒ , = − 𝔼𝒛~*$ log 𝐷(𝐺 𝒛 )

𝒙 𝑁(0, 1)

Unidirectional	Mapping

Vanilla GAN - Intro

ℒ , = 𝔼𝒛~*$ log(1 − 𝐷 𝐺 𝒛 )



min
,
max
'

𝑉 𝐷, 𝐺 = min
,

max
'

𝔼𝒙~*!"#" log 𝐷(𝒙) + 𝔼𝒛~*$ log(1 − 𝐷 𝐺 𝒛 )

Vanilla GAN - Intro

𝐺
∗
= min

,
𝔼𝒛~*$ log(1 − 𝐷(𝐺 𝒛 ))

𝐷 ∗= max
'

𝔼𝒙~*!"#" log 𝐷(𝒙) + 𝔼𝒛~*$ log(1 − 𝐷(𝐺 𝒛 ))

Why optimising this objective can work?



Vanilla GAN - Theoretical Results

• We claim that this min-max game has a global optimum for 𝑝@ = 𝑝%,',

• First, we claim that for 𝐺 fixed, the optimum 𝐷∗ = a*+,+
a) 4 a*+,+

• Then  for 𝐷∗ fixed, 𝑉 𝐺, 𝐷 = −𝑙𝑜𝑔4 + 𝐽𝑆(𝑝%,',||𝑝@)

• Thus, when D and G are optimal, 𝑝%,', = 𝑝@



Vanilla GAN - Theoretical Results

• Dive into the Objective

• min
b
max
c

𝑉 𝐷, 𝐺 = min
b

max
c

𝔼𝒙~a*+,+ log 𝐷(𝒙) + 𝔼𝒛~a- log(1 − 𝐷 𝐺 𝒛 )

• When 𝑧~𝑝 𝑧 , let 𝑝@denote distribution of 𝐺 𝑧

• min
b
max
c

𝑉 𝐷, 𝐺 = min
b

max
c

𝔼𝒙~a*+,+ log 𝐷(𝒙) + 𝔼𝒙~a) log(1 − 𝐷(𝒙)



Vanilla GAN - Theoretical Results

• First, we claim that for 𝐺 fixed

• The optimum 𝐷∗ = a*+,+
a) 4 a*+,+

𝑉 𝐺, 𝐷 - =
𝑝./0/
𝐷(𝑥)

−
𝑝1

1 − 𝐷 𝑥
= 0



Vanilla GAN - Theoretical Results

• Then  for 𝐷∗ fixed

• Recap 𝐽𝑆(𝑃| 𝑄 = !
"
𝐾𝐿(𝑃|| 142

"
) + !

"
𝐾𝐿(𝑄|| 142

"
)

• Then 𝑉 𝐺, 𝐷 = −𝑙𝑜𝑔4 + 2𝐽𝑆(𝑝%,',||𝑝@)



Vanilla GAN - Training Algorithm

• Loop for: Sample a batch 𝑧f {xf} -> updating D -> updating G

Why not updating D to its optimum first?



Vanilla GAN - Theoretical Results

𝑝./0/
𝑝1

𝑝2

𝑝'

The discriminator is unable to differentiate between the two distributions, i.e. D(x) = 1

Time



Vanilla GAN - Experiments
• MNIST and TFD

• Random sample

• Interpolations
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Vanilla GAN - Experiments
• CIFAR10
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Fully connected model Convolutional model

Can we get better performance?
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Deep Convolutional GAN (DCGAN)

Normal distribution as 
the latent distribution

z = 100 values

Generator：from a prior distribution to an image distribution

b𝑿𝒛

• Using the Power of Convolutional Nets

Data distribution
x = 64x64x3 values



Deep Convolutional GAN (DCGAN)

• GAN is difficult to train: 1. small G gradient if D is good. 2. oscillation

• DCGAN tricks
• 1. Batch normalisation on all layers except the final layer of G and input layer of D, 

with a decay of 0.9 (default was 0.99)

• 2. Adam optimiser with a 1st order momentum (beta1) of 0.5 (default was 0.9)

• 3. Leaky ReLU with an alpha of 0.2 (default was ReLU)

• 4. Strided convolutions (default was Maxpooling)

• 5. Learning rate of 0.0002 (default was 0.0001)



Deep Convolutional GAN (DCGAN)

Noise vector 𝒛𝟏 Noise vector 𝒛𝟐
Interpolation: 𝟏 − 𝛼 𝒛𝟏 + 𝛼𝒛𝟐

𝛼 = 0 𝛼 = 1𝛼 = 0.5

• Latent Representation



Deep Convolutional GAN (DCGAN)

• Latent Representation
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Adversarial Loss vs. MSE

• Limitation of mean squared error

example from “deep learning” Ian Goodfellow …

An autoencoder trained with mean squared error for a robotics task has failed to reconstruct a ping pong ball.



Adversarial Loss vs. MSE

(Center) Image produced by a predictive generative network trained with mean squared error
alone. Because the ears do not cause an extreme difference in brightness compared to the
neighboring skin, they were not sufficiently salient for the model to learn to represent them.

(Right) Image produced by a model trained with a combination of mean squared error and
adversarial loss. Using this learned cost function, the ears are salient because they follow a
predictable pattern.

example from “deep learning” Ian Goodfellow …
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Adversarial Loss vs. MSE

• Some impressive samples of GAN, compared with other generative models:

DFC-VAEStyle-GAN 2019
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Challenges of GAN

• Density Estimation
• Inferring Latent Representation

• Autoregressive Models: 𝑝 𝑥!, 𝑥", … , 𝑥# = 𝑝 𝑥! 𝑝 𝑥" 𝑥! …𝑝(𝑥#|𝑥!,…, 𝑥#j!)
• VAE: 𝑝 𝑥!, 𝑥", … 𝑥# = 𝐸k~a k 𝑃 𝑥 𝑧 ≈ !

l
∑mn!
l 𝑃 𝑥 𝑧m , 𝑧!, 𝑧"… 𝑧l~𝑖. 𝑖. 𝑑. 𝑃(𝑧)

• Flow:𝑝 𝑥!, 𝑥", … , 𝑥# = 𝜋 𝑧 𝑑𝑒𝑡 𝐽$./ = 𝜋 𝑧 !
%&' ('

• Then we can estimate the density function of 𝑝 𝑥!, 𝑥", … 𝑥#
• Application: Detect missing mode

• If for an instance 𝑥′, 𝑝(𝑥′) ≈ 0, then x’  is probably a missing mode

• GAN cannot estimate the density function of 𝑝 𝑥 , so GAN is called implicit image 
model. AR, VAE, Flow are called explicit image models
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Challenges of GAN

• Density Estimation
• Inferring Latent Representation
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Bidirectional	Mapping

𝒙𝒙 𝑁(0, 1)
Latent	SpaceData	Space

𝑁(0, 1)

Unidirectional	Mapping

Latent	SpaceData	Space

VAE GAN
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Summary: Vanilla GAN

• What is support set? What is manifold?
• Why min-max work?
• Why adversarial loss > MSE for image quality?
• Limitations of vanilla GAN?
• Why DCGAN tricks work?
• Compared with Autoregressive Models, VAE and Normalising Flow Models.
• …



Thanks
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