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So far

* Learning via maximum likelihood over the dataset D

max logp(D; 0) = X.ep logm (GQ 1(?6)) + log det( ax(x))

inverted function determinant of Jacobian

 What we need?
* prior z~1(z) easy to sample

* |nvertible transformations

* Determinants of Jacobian Efficient to compute
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Reference slides

* Hung-vyi Li. Flow-based Generative Model
 Stanford “Deep Generative Models”. Normalizing Flow Models



(T » g
NELE TS
899

PEKING UNIVERSITY

* Coupling layer based normalizing flow models
* Coupling layer

* NICE
 Real NVP
* Glow
* Autoregressive models as flow models
« MAF
* |AF

 Parallel Wavenet
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* Coupling layer based normalizing flow models
* Coupling layer
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' Real NVP
CO u p | I n g Laye r https://arxiv.org/abs/1605.08803
~
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No matter how
complicated it is

elementwise multiplication elementwise add
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Coupling Layer Real NVP

https://arxiv.org/abs/1605.08803
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Coupling Layer

* Learning via maximum likelihood over the dataset D

—1
max logp(D; 0) = Y.xep logm (Ge 1(x)) + log |det (aaeax(x))‘

Jacobian
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Coupling Layer
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Coupling Layer

* We can use coupling layer to design invertible function and calculate
the determinant of Jacobian efficiently!
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Coupling Layer - Stacking
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Coupling Layer
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* Coupling layer based normalizing flow models

* NICE

13
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NICE: Nonlinear Independent Components Estimation

* Additive coupling layers
 Partition the variables z into two disjoint subsets |
* X1:.d = Z1.d H
* Xd+1:n = Zd+1n + H(Zl:d) l
* Volume preserving transformation since determinant is 1. B + :.

» Additive coupling layers are composed together (with arbitrary
partitions of variables in each layer)

* Final layer of NICE applies a rescaling transformation

Dinh et al., 2014. Nonlinear Independent Components Estimation 14
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NICE - Rescaling layers

* Rescaling layers
* Forward:
* Xx; = 5;z;, where s; > 0 is the scaling factor for the i-th dimension.
* Inverse:
* Z; = Xi/si
* Jacobian:
* | =diag(s)

15
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Samples generated via NICE
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(a) Model trained on MNIST (b) Model trained on TFD
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Samples generated via NICE
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(¢) Model trained on SVHN (d) Model trained on CIFAR-10

17



(ST »
NELF TS

PEKING UNIVERSITY

* Coupling layer based normalizing flow models

e Real NVP

18
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Real NVP

* Coupling layers | |
 Partition the variables z into two disjoint subsets F H
* X1:d = Z1d ’L _{'_ ‘
* Xg+1m = Za+1n O F(21.0) + H(21.9) - e .
* Non-volume preserving transformation in general since determinant can be
less than or greater than 1
* Coupling layers are composed together (with arbitrary partitions of

variables in each layer)

Dinh et al., 2017. Density estimation using Real NVP "
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Samples generated via Real-NVP
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* Coupling layer based normalizing flow models

e Glow

21
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Convolutions

Coupling Layer

Invertible 1x1 conv

Coupling Layer

Kingma et al. Glow: Generative Flow with Invertible 1x1 Convolutions
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GLOW
. https://arxiv.org/abs/1807.03039
1x1 Convolution p g

\\ —

3x3
Z X
W can shuffle the channels. 3 0|01 1
If W is invertible, it is easy to 1| = 2
compute W1, 2 o|1|01|]|3

23



1x1 Convolution
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1x1 Convolution
(det(w))** :

If W is 3x3, computing
det(W) is easy. _ U

dxd I
positions :

(pixels)
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Image results: Glow
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Figure 5: Linear interpolation in latent space between real images

Coupling Layer

Invertible 1x1 conv

Coupling Layer

26
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* Coupling layer based normalizing flow models

* Autoregressive models as flow models
« MAF

27
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Autoregressive models as flow models

* Consider a Gausian autoregressive model:
* p(x) = [Ii=1 p(xilx<i)

2
» Such that p(x;|x<;) = N (g (xq, -, xi_1), exp(a;(xq, -, xi-1)) "), wy, a; are
neural networks.

e Sampler for this model:
« Sample z;~N(0,1)
* Let x; = exp(a;) z; + u; < look like coupling layer ~~
* Flow interpretation: transform z to x via invertible transformation
(parameterized by u;, a;)

28
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Masked Autoregressive Flow (MAF)

x; =2z -exp(a;) +pu; Vie{l...n}

Ln

Transformed " . . -
distribution 1 2 i-1 g
Base

ase z z Zi Z;
distribution 1 2 i-1 t

Figure adapted from Eric Jang’s blog

* Forward: (z to x)
* x; = z;exp(a;) + 1
* Then calculate a; 1, ti+1

e Sampling is sequential and slow
(like autoregressive)

Papamakarios et al. Masked Autoregressive Flow for Density Estimation 29
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Masked Autoregressive Flow (MAF)

* Inverse (x to z)

T f d
pemed | o w | ma | m | ez = G — pexp(—a)

* can be done in parallel.

* Jacobian is lower diagonal,
hence determinant can be
computed efficiently

Base |a |2 |-|ma|a ||= | ¢Likelihood evaluation is easy and

= (51— 1) exp( o) Vie {1...m) parallelizable

Figure adapted from Eric Jang’s blog 30
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det (22

* max logp(D; 0) = Y.,eplogm (Gg_l(X)) + log

* MAF can calculate G5 *(x) parallel.

 MAF: Fast likelihood evaluation (parallel), slow sampling(sequential)

31
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* Coupling layer based normalizing flow models

* Autoregressive models as flow models

* I|AF

32
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Inverse Autoregressive Flow (IAF)

Transformed
distribution

Base
distribution

Figure adapted from Eric Jang’s blog

z; = 2z -exp(a;) +p; Vie{l...n}

I1

T2

Ti—1

Z;

Ip

21

22

* Forward: (z to x)
* x; = z;exp(a;) + 1
 parallel

* Inverse (x to z)
* z; = (6 — ppexp(—a;)
* Then compute u;, a;
* sequential

Kingma et al. Improving Variational Inference with Inverse Autoregressive Flow 33
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Inverse Autoregressive Flow (IAF)
 Fast to sample (parallel)
* Slow to evaluate likelihoods of data points during training (sequential)

 Fast to evaluate likelihoods of a generated point (we only need to
cache z4, z5, ..., Z,)



IAF is inverse of MAF

Transformed
distribution

Base
distribution
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x; =2z -exp(o;) +pi Vie{l...n}

T T2 | Ti-1 Z; Tn
A
21 29 Zi—1 Z; Zn

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

35
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|IAF vs. MAF

* Computational tradeoffs
 MAF: Fast likelihood evaluation, slow sampling
* |AF: Fast sampling, slow likelihood evaluation

* MAF more suited for training based on MLE, density estimation
* |AF more suited for real-time generation
* Can we get the best of both worlds?
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* Coupling layer based normalizing flow models

* Autoregressive models as flow models

 Parallel Wavenet

37
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MAF: lel
Parallel Wavenet Fix o z paralle
|AF: z — x parallel

e Two part training with a teacher (MAF) and student model (IAF)

* Teacher can be efficiently trained via MLE.

* Once teacher is trained, initialize a student model parameterized by
|AF. Student model cannot efficiently evaluate density for external

data points but allows for efficient sampling

» Key observation: IAF can also efficiently evaluate densities of its own
generations (via caching the noise variates z4, z,, ..., Zy)

Oord et al. Parallel WaveNet: Fast High-Fidelity Speech Synthesis. 2017
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Parallel Wavenet MAF: x +— z parallel
|AF: z — x parallel
WaveNet Teacher [0 0 0 0 00000000000 Teacher Output
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Figure 2: Overview of Probability Density Distillation. A pre-trained WaveNet teacher is used to
score the samples  output by the student. The student is trained to minimise the KL.-divergence
between its distribution and that of the teacher by maximising the log-likelihood of its samples under
the teacher and maximising its own entropy at the same time.

Oord et al. Parallel WaveNet: Fast High-Fidelity Speech Synthesis. 2017 39
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Parallel Wavenet :\Z'\?_F' x > z parallel
. Z — x parallel

* Probability density distillation: Student distribution is trained to

minimize the KL divergence between student (s) and teacher (t)
D1 (s, t) = Ex-s[log(s(x)) —log(t(x))]

* Evaluating and optimizing Monte Carlo estimates of this objective

requires:
e Samples x from student model (IAF)

* Density of x assigned by student model (IAF)
e Density of x assigned by teacher model (MAF)

 All operations above can be implemented efficiently!
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Parallel Wavenet: Overall algorithm

* Training
e Step 1: Train teacher model (MAF) via MLE
e Step 2: Train student model (IAF) to minimize KL divergence with teacher

* Test-time: Use student model for testing

* Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!

e Useful in speech synthesis
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Coupling layer based normalizing flow models
Coupling layer

* NICE add only

e Real NVP  add+mul

* Glow conv 1x1
Autoregressive models as flow models
 MAF fast train, slow test
 |AF fast test, slow train

 Parallel Wavenet fast train, fast test

42
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Summary of Normalizing Flow Models

* Transform simple distributions into more complex distributions via
change of variables

e Jacobian of transformations should have tractable determinant for
efficient learning and density estimation

* Computational tradeoffs in evaluating forward and inverse
transformations
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Thanks
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