

Normalizing Flow Models (Part 1)

Hao Dong

Peking University

和桌头学 PEKING UNIVERSITY

Where we are?

Autoregressive Models

$$p(x_1, x_2, ..., x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2) ... p(x_n|x_1, ..., x_{n-1})$$

- Provide tractable likelihoods
- No direct mechanism for learning features
- Slow generation Wavenet: 1 second audio takes 90 mins (200K samples)
- Variational Autoencoders

$$p(X) = \sum_{Z} p(X|Z)p(Z) \text{ or } p(X) = \int_{Z} p(X|Z)p(Z)dZ$$

- Can learn feature representations (via latent variables Z)
- Have intractable marginal likelihoods.
- Optimizing a lower bound it is not maximining the likelihood ... we don't know the gap

Question: Can we design a latent variable model with tractable likelihoods? Yes! We can use normalizing flow models. (Today)

Reference slides

- Hung-yi Li. Flow-based Generative Model
- Stanford "Deep Generative Models". Normalizing Flow Models

- Background
 - Generator
 - Change of variable theorem (1D)
 - Jacobian Matrix & Determinant
 - Change of variable theorem
- Normalizing Flow
 - Flow-based model
 - Learning and inference
 - Desiderata

Background

- Generator
- Change of variable theorem (1D)
- Jacobian Matrix & Determinant
- Change of variable theorem
- Normalizing Flow
 - Flow-based model
 - Learning and inference
 - Desiderata

Generator

• A generator G is a network. The network maps a simple distribution (for example, normal distribution) $\pi(z)$ to a complex data distribution $p_G(x)$, which aims to be as close to real data distribution $p_{data}(x)$ as possible.

- $G^* = arg \max_{G} \sum_{i=1}^{m} log P_G(x^i)$
- Normalizing flow models directly optimize the objective function!
- Key idea: Map simple distributions (easy to sample and evaluate densities) to complex distributions (learned via data) using change of variables.

Background

- Generator
- Change of variable theorem (1D)
- Jacobian Matrix & Determinant
- Change of variable theorem
- Normalizing Flow
 - Flow-based model
 - Learning and inference
 - Desiderata

- Let Z be a uniform random variable U[0,1] with density π_Z . What is $\pi_Z(1/2)$?
 - 1
- Let X = f(Z) = 2Z + 1 and let p_X be its density. What is $p_X(2)$?
 - When Z = 1/2, X = 2Z + 1 = 2, so does $p_X(2) = \pi_Z(\frac{1}{2}) = 1$?
 - No
- Clearly, X is uniform in [1,3], so $p_X(2) = 1/2$

When x = f(z) and function f is **invertible** and **differentiable**.

If
$$f$$
 is monotonically increasing, we have $Pr(z' \le z \le (z' + \Delta z)) = Pr(f(z') \le f(z) \le f(z' + \Delta z)) = Pr(x' \le x \le (x' + \Delta x))$

If f is monotonically decreasing, we can get the same result.

So we get

$$\left| \int_{z'}^{z' + \Delta z} \pi(z) \, dz \right| = \left| \int_{x'}^{x' + \Delta x} p(x) \, dx \right|$$

$$\bullet \left| \int_{z'}^{z' + \Delta z} \pi(z) \, dz \right| = \left| \int_{x'}^{x' + \Delta x} p(x) \, dx \right|$$

• Use laGrange's Mean Value Theorem, we get $\pi(\tilde{z})|\Delta z| = p(\tilde{x})|\Delta x|$, where $z' \leq \tilde{z} \leq z' + \Delta z, x' \leq \tilde{x} \leq x' + \Delta x$

• When
$$\Delta z \to 0$$
, we have $p(x') = \pi(z') \left| \frac{\Delta z}{\Delta x} \right|_{x=x'} = \pi(z') \left| \frac{dz}{dx} \right|_{x=x'}$

The blue square and the green square should be equal in area

$$p(x')|\Delta x| = \pi(z')|\Delta z|$$

$$p(x') = \pi(z') \left| \frac{dz}{dx} \right|$$

- change of variable theorem (1-D case): if x = f(z) and function f is invertible and differentiable, then $p(x) = \pi(z) \left| \frac{dz}{dx} \right| = \pi(z) \left| \frac{df^{-1}(x)}{dx} \right|$
- How about multi-dimension cases?
 - We need more math background.

Background

- Generator
- Change of variable theorem (1D)
- Jacobian Matrix & Determinant
- Change of variable theorem
- Normalizing Flow
 - Flow-based model
 - Learning and inference
 - Desiderata

Jacobian Matrix (2D case)

1)
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
$$x = f(z) \quad z = f^{-1}(x)$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} z_1 + z_2 \\ 2z_1 \end{bmatrix} = f\left(\begin{bmatrix} z_1 \\ z_2 \end{bmatrix}\right)$$

$$\begin{bmatrix} x_2/2 \\ x_1 - x_2/2 \end{bmatrix} = f^{-1} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right)$$

input (a)
$$J_f = \begin{bmatrix} \frac{\partial x_1}{\partial z_1} & \frac{\partial x_1}{\partial z_2} \\ \frac{\partial x_2}{\partial z_1} & \frac{\partial x_2}{\partial z_2} \end{bmatrix} \text{ output}$$

$$J_{f^{-1}} = \begin{bmatrix} \partial z_1 / \partial x_1 & \partial z_1 / \partial x_2 \\ \partial z_2 / \partial x_1 & \partial z_2 / \partial x_2 \end{bmatrix}$$

$$J_f = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$J_{f^{-1}} = \begin{bmatrix} 0 & 1/2 \\ 1 & -1/2 \end{bmatrix}$$

$$J_f J_{f^{-1}} = I$$

Determinant

The determinant of a **square matrix** is a **scalar** that provides information about the matrix.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$det(A) = ad -bc$$

$$det(A) = 1/det(A^{-1})$$
$$det(J_f) = 1/det(J_{f^{-1}})$$

$$A = \begin{bmatrix} 0_1 & 0_2 & 0_3 \\ 0_4 & 0_5 & 0_6 \\ 0_7 & 0_8 & 0_9 \end{bmatrix}$$

$$det(A) =$$

$$a_1 a_5 a_9 + a_2 a_6 a_7 + a_3 a_4 a_8$$

$$-a_3a_5a_7 - a_2a_4a_9 - a_1a_6a_8$$

Determinant

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

• 3 x 3
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}$$

Background

- Generator
- Change of variable theorem (1D)
- Jacobian Matrix & Determinant
- Change of variable theorem
- Normalizing Flow
 - Flow-based model
 - Learning and inference
 - Desiderata

Change of Variable Theorem (2D case)

$$p(x') \left| \det \begin{bmatrix} \Delta x_{11} & \Delta x_{21} \\ \Delta x_{12} & \Delta x_{22} \end{bmatrix} \right| = \pi(z') \Delta z_1 \Delta z_2 \qquad x = f(z)$$

$$p(x') \left| \frac{1}{\Delta z_1 \Delta z_2} \det \begin{bmatrix} \Delta x_{11} & \Delta x_{21} \\ \Delta x_{12} & \Delta x_{22} \end{bmatrix} \right| = \pi(z')$$

$$p(x') \left| \det \begin{bmatrix} \Delta x_{11} / \Delta z_1 & \Delta x_{21} / \Delta z_1 \\ \Delta x_{12} / \Delta z_2 & \Delta x_{22} / \Delta z_2 \end{bmatrix} \right| = \pi(z')$$

$$p(x') \left| \det \begin{bmatrix} \frac{\partial x_1 / \partial z_1}{\partial x_1 / \partial z_2} & \frac{\partial x_2 / \partial z_1}{\partial x_2 / \partial z_2} \end{bmatrix} \right| = \pi(z')$$

$$p(x') \left| \det \begin{bmatrix} \frac{\partial x_1 / \partial z_1}{\partial x_1 / \partial z_2} & \frac{\partial x_1 / \partial z_2}{\partial x_2 / \partial z_2} \end{bmatrix} \right| = \pi(z') \quad \text{(transpose)}$$

$$p(x') \left| \det \left[\frac{\partial x_1 / \partial z_1}{\partial x_2 / \partial z_1} & \frac{\partial x_1 / \partial z_2}{\partial x_2 / \partial z_2} \right] \right| = \pi(z') \quad \text{(transpose)}$$

$$p(x') \left| \det \left[\int_f \right] \right| = \pi(z')$$

$$p(x') \left| \det \left[\int_f \right] \right| = \pi(z')$$

$$p(x') \left| \det \left[\int_f \right] \right| = \pi(z')$$

Change of Variable Theorem (General case)

• Change of Variable Theorem (General case): if the mapping function between Z and X, given by $f: \mathbb{R}^n \to \mathbb{R}^n$, is differentiable and invertible such that $X = f^{-1}(Z)$ and Z = f(X), then

$$p(\mathbf{x}) = \pi(\mathbf{z}) \left| \det(\frac{\partial f^{-1}(\mathbf{x})}{\partial \mathbf{x}}) \right| = \pi(\mathbf{z}) \left| \det(J_{f^{-1}}) \right|$$

- Note 1: x and z need to be continuous and have the same dimension
- Note 2: since for any invertible matrix A, $det(A^{-1}) = det(A)^{-1}$

$$p(\mathbf{x}) = \pi(\mathbf{z}) \left| \frac{1}{\det(J_f)} \right|$$

- Background
 - Generator
 - Change of variable theorem (1D)
 - Jacobian Matrix & Determinant
 - Change of variable theorem
- Normalizing Flow
 - Flow-based model
 - Learning and inference
 - Desiderata

$$p(x')|det(J_f)| = \pi(z')$$

$$p(x') = \pi(z')|det(J_{f^{-1}})|$$

$$p(x') = \pi(z')|det(J_{f^{-1}})|$$

Flow-based Model

$$log p_G \left(x^i \right) = log \pi \left(G^{-1} \left(x^i \right) \right) + log |det(J_{G^{-1}})|$$

G is limited. We need more generators

What you actually do?

- Background
 - Generator
 - Change of variable theorem (1D)
 - Jacobian Matrix & Determinant
 - Change of variable theorem
- Normalizing Flow
 - Flow-based model
 - Learning and inference
 - Desiderata

Learning and inference

Learning via maximum likelihood over the dataset D

$$\max_{\theta} log p(D; \theta) = \sum_{x \in D} log \pi \left(G_{\theta}^{-1}(x) \right) + log \left| det \left(\frac{\partial G_{\theta}^{-1}(x)}{\partial x} \right) \right|$$

- Exact likelihood evaluation via inverse transformation and change of variables formula
- Sampling via forward transformation $G_{\theta}: Z \to X$ $z \sim \pi(z), x = G_{\theta}(z)$
- Latent representations inferred via inverse transformation (no inference network required!)

$$z = G_{\theta}^{-1}(x)$$

Normalizing Flow

- "Normalizing" means that the change of variables gives a normalized density after applying an invertible transformation.
- "Flow" means that the invertible transformations can be composed with each other to create more complex invertible transformations.

- Background
 - Generator
 - Change of variable theorem (1D)
 - Jacobian Matrix & Determinant
 - Change of variable theorem
- Normalizing Flow
 - Flow-based model
 - Learning and inference
 - Desiderata

Desiderata for flow models

- Simple prior $\pi(z)$ that allows for efficient sampling and tractable likelihood evaluation. E.g., Gaussian
- Invertible transformations
- Computing likelihoods also requires the evaluation of determinants of $n \times n$ Jacobian matrices, where n is the data dimensionality
 - Computing the determinant for an $n \times n$ matrix is $O(n^3)$: prohibitively expensive within a learning loop!
 - **Key idea**: Choose transformations so that the resulting Jacobian matrix has special structure. For example, the determinant of a triangular matrix is the product of the diagonal entries, i.e., an O(n) operation

Triangular Jacobia

$$\mathbf{x}=(x_1,\cdots,x_n)=\mathbf{f}(\mathbf{z})=(f_1(\mathbf{z}),\cdots,f_n(\mathbf{z}))$$

$$J = \frac{\partial \mathbf{f}}{\partial \mathbf{z}} = \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & \frac{\partial f_1}{\partial z_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial z_1} & \cdots & \frac{\partial f_n}{\partial z_n} \end{pmatrix}$$

Suppose $x_i = f_i(\mathbf{z})$ only depends on $\mathbf{z}_{\leq i}$. Then

$$J = \frac{\partial \mathbf{f}}{\partial \mathbf{z}} = \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & 0 \\ \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial z_1} & \cdots & \frac{\partial f_n}{\partial z_n} \end{pmatrix}$$

has lower triangular structure. Determinant can be computed in **linear time**. Similarly, the Jacobian is upper triangular if x_i only depends on $\mathbf{z}_{>i}$

Thanks