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Hao Dong

Peking University



NELE TS
78998

PEKING UNIVERSITY

Where we are?

* Autoregressive Models
P (X1, X3, ooy Xn) = P02 X)) D (X3 |%1, X2) oo DX | X100y Xjp—1)
* Provide tractable likelihoods
* No direct mechanism for learning features

* Slow generation — Wavenet: 1 second audio takes 90 mins (200K samples)

e Variational Autoencoders
p(X) =Xz p(X12)p(Z) or p(X) = [, p(X|Z)p(Z)dZ
* Can learn feature representations (via latent variables 7)

* Have intractable marginal likelihoods.
e Optimizing a lower bound — it is not maximining the likelihood ... we don’t know the gap

Question: Can we design a latent variable model with tractable likelihoods?
Yes! We can use normalizing flow models. (Today)
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Reference slides

* Hung-vyi Li. Flow-based Generative Model
 Stanford “Deep Generative Models”. Normalizing Flow Models



5
ey e 7S Z

PEKING UNIVERSITY

* Background
* Generator
* Change of variable theorem (1D)
e Jacobian Matrix & Determinant
* Change of variable theorem
* Normalizing Flow
* Flow-based model
* Learning and inference
* Desiderata
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* Background
* Generator
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Generator

* A generator G is a network. The network maps a simple distribution
(for example, normal distribution) m(z) to a complex data distribution
pc (x), which aims to be as close to real data distribution pg,:,(x) as
possible.

Normal 121€9)

Pdata (x)
Distribution 4

generator R
€ G .
- \-

m(z)

l as close as possible ‘
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Normal Paq (X) Pdata (x ) PEKING UNIVERSITY
Distribution . 4
generator RV
G G ' ' ‘
n(z)

as close as possible

G* =arg mGaXZ?il lOQPG(xi)

* Normalizing flow models directly optimize the objective function!

» Key idea: Map simple distributions (easy to sample and evaluate
densities) to complex distributions (learned via data) using change of
variables.
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* Background

* Change of variable theorem (1D)
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Change of Variable Theorem (1D)

* Let Z be a uniform random variable U[0,1] with density ;. What is

m,(1/2)?
.1

*LletX = f(Z) = 2Z + 1 and let py be its density. What is pyx(2)?
* WhenZ=1/2,X=2Z+1=2,s0does py(2) =m, (—;) =17
* No

* Clearly, X is uniformin [1,3], sopx(2) = 1/2



CD » g
ANEFTEE
Tgoh

PEKING UNIVERSITY

Change of Variable Theorem (1D)

(2) jT[(Z)dZ =1
} ,
6,7 1" -
x=f@ %7 .
=274+ 1 p(x") =E7T(Z’)
p(x) jp(x)dx =1
0.5
@ » X
1 x! 3

10
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Change of Variable Theorem (1D)

n(z") ,
7! '} > Z th":\t are
x = f(2) ) their reIIatlons.

p(x')
p(x)/\/\-/f(

!

X
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Change of Variable Theorem (1D)

When x = f(z) and function f is invertible and differentiable.

If f is monotonically increasing, we have Pr(z’' <z < (z' + Az)) =
Pr(f(z)<f(z) <f(Zz' +A2)) =Pr(x' <x < (X' + Ax))

If f is monotonically decreasing, we can get the same result.

So we get
z'+Az x'+Ax
J w(z) dz f p(x) dx

A x!
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Change of Variable Theorem (1D)

fZZ,,+AZ (z) dz‘ = ‘ f;,’JrAx p(x) dx‘

* Use laGrange's Mean Value Theorem, we get m(2)|Az| = p(X)|Ax|,
wherez' <7<z +Az,x' <x¥<x"+ Ax

Az

e When Az — 0, we have p(xl) — ﬂ(Z’) Ax

dz
=n(z' |—
X=X/ ) dx

xX=XxI
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Change of Variable Theorem (1D)

, - The blue square and the green
m(z') { j square should be equal in area
oy T

> 7

R
PPV TR p0|ax] = r(2)|Az]
T AEER () = n(2) | o
& : : : e X ) =127 —_
ﬁ: : : : ". ;x p dx
x' x' + Ax
*"—o— *——>
K

14
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Change of Variable Theorem (1D)

* change of variable theorem (1-D case): if x = f(z) and function f is
df ')
dx

invertible and differentiable, then|p(x) = m(2) Z}ZC =1(z)

 How about multi-dimension cases?
* We need more math background.
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* Background

e Jacobian Matrix & Determinant

16
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Jacobian Matrix (2D case)
x=[§;] z=[2] 2) [x1] [Z1

x=f(z) z=f'(x)

2Z1

o =1 ()

2] )
a951/5Zi1n|OUt59C1/aZZ ' ]f - E (1)

output

]f - 0x2/5'Z1 axZ/aZZI

] L, = azl/axl azl/ale
! 022/0361 022/5362

1/2

I =1 —12
Jelgr =1

4
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RSITY
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Determinant
The determinant of a square matrix is a scalar that provides

information about the matrix.
det(A) = ad —bc det(A) =

e 2 X2 *3x3
A10509 +Ar0607+a3040g

det(A) = 1/det(4™1)
det(]f) = 1/det(]f—1)

—d3dsgdy —a20409—0A10g0Ag

18
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Determinant

e 2X2 e 3x3 4 d2 A3
A=|as as dag
_Ja b a, ag Qg

A= [C d] 2z

(a;,ag, aq)

(Cl4, as, a6)

Zr 19
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* Background

* Change of variable theorem

20
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Change of Variable Theorem (2D case)

ZZA

Xz‘
Ax12
Az, Ax!
(2" 3
P op(xh)
Az, § Axzq
@ ..
Ax Ax
/ 11 21 /
x") |det =1(z")Az, Az
pC)|det [yt 2 || = mGazaz,

21



pC) |det [t 2 || = mGanaz,

p(x") AleAZZdet 22; ﬁfé;] =n(z")

P [det [ o] = 7

P aet [70057 Grtan]| = ¢

p(x") |det 32532 nggz =m(z') (transpose)
p(x’)|det(]f) =1(z") D (') = 1(2) 1 ‘

p(x) = m(z)|det(J;-) et(y) .
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Change of Variable Theorem (General caée)

* Change of Variable Theorem (General case): if the mapping function
between Z and X, given by f: R™ — R", is differentiable and invertible
suchthat X = f~1(Z) and Z = f(X), then

0 -1
det( ! ax(x)) = n(z)|det(J )|

* Note 1: x and z need to be continuous and have the same dimension
* Note 2: since for any invertible matrix A, det(A™1) = det(4)™?

p(x) = n(z)

1
p(x) = n(z) Idet(]f)‘
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* Normalizing Flow
* Flow-based model

24



p()|det(Jy)] = n(2")

Flow-based Model p(x) = n(z")|det(Jp-1)|
Normal pe(x)
Distribution

() ._» generator

= arg maxz logpg (x )

100X 100 x 3

G has limitation

=

¥ -
‘di "i
I59%

pG(xl) = n(z‘)ldet06—1)| »

-67()

You can compute det(J;)

You know G 1

logp(;(xi) = logn (G‘l(xi)) + log|det(J ;-1)|

NV vz A P

PEKING UNIVERSITY
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G i1s limited. We need more generators

(x) p1(x) p2(x) p3(x)
O**Q*Ek*ﬂ*&
pi(xt) = ﬂ(z det ]G zi = Gt GKl(x

)

() = (e (det(1:2)]) - (et /)
long(xi) = logn(zi) + z:zl log ‘det( GEl)

po(x) — (2t )( det( oot ) )(‘det(]Gz )

Maximize
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What you actually do? 2

logpe(x') = logm G‘l(xi)) + logldet(J o-1)
I If z is zero, this term
will be -inf

This term: make z!
become zero
vector

If z' is always zero:
Jc—1 would be zero matrix

det(]G—l) = 0

Actually, we train G1, but we use G for generation.

Paata(X) 7
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* Normalizing Flow

* Learning and inference

28
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Learning and inference

* Learning via maximum likelihood over the dataset D

0Gy " (x)

u — _1 0

max logp(D; 6) = EED logm (Gg (x))+log det( 7 )
X

* Exact likelihood evaluation via inverse transformation and change of
variables formula

* Sampling via forward transformation Gg: Z - X
z~1(z),x = Gg(2)

 Latent representations inferred via inverse transformation (no
inference network required!)
z = Gy (x)
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Normalizing Flow

* “Normalizing” means that the change of variables gives
a normalized density after applying an invertible transformation.

* “Flow” means that the invertible transformations can be composed
with each other to create more complex invertible transformations.
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* Normalizing Flow

e Desiderata

31
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Desiderata for flow models

* Simple prior m(z) that allows for efficient sampling and tractable
likelihood evaluation. E.g., Gaussian

* Invertible transformations

* Computing likelihoods also requires the evaluation of determinants of
nXn Jacobian matrices, where n is the data dimensionality

 Computing the determinant for an nxn matrix is 0 (n>): prohibitively
expensive within a learning loop!

* Key idea: Choose transformations so that the resulting Jacobian matrix has
special structure. For example, the determinant of a triangular matrix is the
product of the diagonal entries, i.e., an O(n) operation
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Triangular Jacobia

K= (x1se ox0) = F(2) = (A(@).-+ . F(2)

e
0z of, ... of
821 8Zn

Suppose x; = fj(z) only depends on z<;. Then

of
o % ... 0
g9
0z of,  of,
821 82,,

has lower triangular structure. Determinant can be computed in linear
time. Similarly, the Jacobian is upper triangular if x; only depends on z>;

33
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Thanks
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