

An effort of solving mode collapse in MolGAN

Li, Ziyao & Ma, Xiaojun; June 4, 2020

Schema of MolGAN

- Generator and Discriminator
- Reward Network

N. D. Cao, T. Kipf: MolGAN: An implicit generative model for small molecular graphs. CoRR abs/1805.11973 (2018)

Implicit Graph Gen.

- Utilizing implicit, likelihood-free methods
- Generate *G* directly:
 - en $(z) \sim G = (A, X)$
 - $A \in \mathbb{R}^{N \times N \times C_b}$, indication of edges (binary)
 - $X = [x_1, ..., x_n] \in \mathbf{R}^{N \times C_a}$, indication of node (binary)
 - (N = 9, C_a = 4 the types of atoms (C N O F), C_b = 4 the types of bonds)

MolGAN Overview

$$L(\theta) = \lambda \cdot L_{WGAN} + (1 - \lambda) \cdot L_{RL}$$

Overall techniques: GAN + Property Optimization

- Generate A and X, sample \tilde{A} and \tilde{X}
- Train with Reward network and Discriminator

Generator

Predict the entire graph at once

• Generate A and X at once using a simple multi-layer perceptron:

 $\tilde{A} = \operatorname{reshape}(\operatorname{MLP}_A(z), N \times N \times C_b)$

$$A = \frac{1}{2}(\tilde{A} + \tilde{A}^T)$$

 $X = \operatorname{reshape}(\operatorname{MLP}_X(z), N \times C_a)$

No explicit constraints over A (atom degrees et al)

Discriminator and Reward

• Encode MolGraph with Relational-GCN & GG-NN readout fn.

$$\begin{aligned} \boldsymbol{h}_{i}^{\prime(\ell+1)} &= f_{s}^{(\ell)}(\boldsymbol{h}_{i}^{(\ell)},\boldsymbol{x}_{i}) + \sum_{j=1}^{N} \sum_{y=1}^{Y} \frac{\tilde{\boldsymbol{A}}_{ijy}}{|\mathcal{N}_{i}|} f_{y}^{(\ell)}(\boldsymbol{h}_{j}^{(\ell)},\boldsymbol{x}_{i}) ,\\ \boldsymbol{h}_{i}^{(\ell+1)} &= \tanh(\boldsymbol{h}_{i}^{\prime(\ell+1)}) , \end{aligned} \tag{5} \\ \begin{aligned} \boldsymbol{h}_{\mathcal{G}}^{\prime} &= \sum_{v \in \mathcal{V}} \sigma(i(\boldsymbol{h}_{v}^{(L)},\boldsymbol{x}_{v})) \odot \tanh(j(\boldsymbol{h}_{v}^{(L)},\boldsymbol{x}_{v})) \\ \boldsymbol{h}_{\mathcal{G}} &= \tanh \boldsymbol{h}_{\mathcal{G}}^{\prime} , \end{aligned}$$

- RewardNet: Approximating non-differentiable rewards of true / generated molecules. (logP, QED, Synthesizability...)
- Training: first train GAN and RewardNet separably; then add reward loss to the generator.

Data: QM9 (Quantum Mechanics) ルネス学 PEKING UNIVERSITY

- Subset of GDB-17 with number of heavy atoms less than 9.
- Size: 130,000 (8:1:1 for train, val, test.)
- A very classic task of molecule representation. (with DFT properties)
- Not a popular task for molecule generation: QED scores et al are actually quite meaningless; generated molecules are usually useless.

Graph Generation

- Back to the ecosystem of *graph generation* research
- VAE-based: GraphVAE (2018) / Junction-Tree VAE (2018) / Constrained Graph VAE (2018) / HVGAE (2020)...
- RL (sequential generation): GCPN (2018) / MolRNN (2019)
 Quantum Mechanics (2020) / ...
- Flow-based: GraphNVP (2019) / GraphAF (2020) / ...
- GAN? MolGAN (2018 ICML workshop on gen. models)
- <u>Starting point:</u> modify MolGAN

Reported Mode Collapse

Objective	Algorithm	Valid (%)	Unique (%)	Time (h)	Diversity	Druglikeliness	Synthesizability	Solubility
Druglikeliness	ORGAN	88.2	69.4*	9.63*	0.55	0.52	0.32	0.35
	OR(W)GAN	85.0	8.2*	10.06*	0.95	0.60	0.54	0.47
	Naive RL	97.1	54.0*	9.39*	0.80	0.57	0.53	0.50
	MolGAN	99.9	2.0	1.66	0.95	0.61	0.68	0.52
	MolGAN (QM9)	100.0	2.2	4.12	0.97	0.62	0.59	0.53
Synthesizability	ORGAN	96.5	45.9*	8.66*	0.92	0.51	0.83	0.45
	OR(W)GAN	97.6	30.7*	9.60*	1.00	0.20	0.75	0.84
	Naive RL	97.7	13.6*	10.60*	0.96	0.52	0.83	0.46
	MolGAN	99.4	2.1	1.04	0.75	0.52	0.90	0.67
	MolGAN (QM9)	100.0	2.1	2.49	0.95	0.53	0.95	0.68
Solubility	ORGAN	94.7	54.3*	8.65*	0.76	0.50	0.63	0.55
	OR(W)GAN	94.1	20.8*	9.21*	0.90	0.42	0.66	0.54
	Naive RL	92.7	100.0*	10.51*	0.75	0.49	0.70	0.78
	MolGAN	99.8	2.3	0.58	0.97	0.45	0.42	0.86
	MolGAN (QM9)	99.8	2.0	1.62	0.99	0.44	0.22	0.89
All/Alternated	ORGAN	96.1	97.2*	10.2*	0.92	0.52	0.71	0.53
All/Simultaneously	MolGAN	97.4	2.4	2.12	0.91	0.47	0.84	0.65
All/Simultaneously	MolGAN (QM9)	98.0	2.3	5.83	0.93	0.51	0.82	0.69

Proposal: Twd Mode Collapse

- An idea of PacGAN, but with explicit variance imitation
- Original model: $D(x_1), D(x_2), D(x_3) \cdots$
- PacGAN: D(x₁, …, x_m); Instable in real training processes (rarely successful)
- Our proposal: $D(x_1; v_B(x)), D(x_2; v_B(x)) \cdots$
- Obs: std. dev may be too sensitive (instable training)
- Sol: *Elastic* Deviation: $v_B(d) = \lambda \sum_{i=1}^{|B|} \frac{|d_i \bar{d}|}{|B|} + (1 \lambda) \sqrt{\sum_{i=1}^{|B|} \frac{(d_i \bar{d})^2}{|B|}}$

Proposal: Better Discriminator

- More expressive discriminator helps to generate stronger samples
- Implement Graph Attentions in the discriminator.
- Detailly:
- MolGAN: $H^{(l+1)} = \sigma \left(\sum_{j \in N(i)} \hat{A}_{ij} h_j^{(l)} W^{(l)} \right)$
- MOLAGAN: $H^{(l+1)} = \sigma\left(\sum_{j \in N(i)} \alpha_{ij} h_j^{(l)} W^{(l)}\right)$

Experiments.

MolGAN; MolGAN+mean; MolGAN+var(elastic)

A (newly raised) assumption.

- What GANs learn is the distribution of data;
- Adding objectives over the generated samples in fact poses a condition.
- In MolGAN, the training of GAN still uses all the datasets when the rwd. objective is incorporated.
- This may be the major reason of mode collapse.
- Solution (naive): train the model with constrained data after the rwd. object is incorporated; i.e. pretrain the model with full data and finetune it according to objectives

TODO

- Project-level:
 - The pre-train strategy we discussed;
 - Implement the GAT discriminator (in fact debug);
 - Conduct experiments on ZINC data...
- Research-level:
 - Meaningful latent space of molecules (recap the demo);
 - Resolve Mode Collapse (with targets) once-and-for-all:
 Conditional MolGAN

Thanks