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BACKGROUND

» Self-Supervised Learning

Unlabeled data — Pretext

Get supervision from the data itself.

>

>

| 2

Predict any part of the input from any
other part.

Predict the future from the past.
Predict the future from the recent past.
Predict the past from the present.
Predict the top from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

« Past

Present

Future —
Slide: LeCun




BACKGROUND

» Self-Supervised Learning

Jigsaw

Clustering

Image Patches Shuffle

@

. \..\‘

Inpainting Colorization
- i Grayscale
+ random missing region filter

Cluster 0 Cluster 1
(Mountains) (Temples)
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Blog: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
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BACKGROUND

» Self-Supervised Learning

Rotation

| Objectives:

ConvNet | Maximize prob.
model F(.) | F'(X°) |

> g(X,y=0) P

| Predict 0 degrees rotation (y=0)
Rotated image: X" ]

Rotate 0 degrees

p ConvNet | > Maximize prob. |

—» g(X,y=1) —Pg model F(.) | F'(x")

Rotate 90 degrees Predict 90 degrees rotation (y=1)

Rotated image: X' | ‘

S— |
ConvNet

Maximize prob.
model F(.) F(X?)
| Predict 180 degrees rotation (y=2) ’
| |
ConvNet p Maximize prob. |

model F(.) F (X% |

> g(X,y=2) >

Image X Rotate 180 degrees
Rotated image: X

-~ g(X,y=3) P>

Rotate 270 degrees | Predict 270 degrees rotation (y=3)

Rotated image: X~ o J

[1] Unsupervised Representation Learning by Predicting Image Rotations (ICLR16) 3
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BACKGROUND

» Image Classifier Forgetting

-.0.9
g :
: . = 0.8 '
Experiment: §
* ) CU 0.7 1
The task of “1 v.s. all” classification. }jj |
g 0.6 E
Each class, train 1k iteration. <05

5k 10k 15k 20k

Then move to the next class. [terations
(a) Regular training.

)

Result:
Each time the task switches, accuracy drops.

After 10k iterations, the cycle of tasks repeats.
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BACKGROUND

» Image Classifier Forgetting
Conclusion:

Classifier fail to learn generalizable representations in a
non-stationary environment.
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BACKGROUND

» Discriminator Forgetting
Experiment:

Classifier trained with the final layer of a discriminator.
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BACKGROUND

» Solution: self-supervised GAN (CVPR19)

Image Classifier+ Self-Supervision (Rotation)
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Iterations Iterations
(a) Regular training. (b) With self-supervision.

[1] Self-Supervised GANs via Auxiliary Rotation Loss (CVPR19) 13
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» Solution: self-supervised GAN (CVPR19)
GAN+ Self-Supervision (Rotation)
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BACKGROUND

» Solution: self-supervised GAN (CVPR19)

Method

LG’ — _V(Ga D) — 'EazNPG E‘TNR [lOg QD(R =T ‘ mr)] 9

LD = V(G, D) — ﬁ 43mdiata

LR logQp(R=1|2")],




BACKGROUND

» Solution: self-supervised GAN (CVPR19)
Method

Lo~ P Eror [log @p(R=1| x")],
Lx~ Prallr~R 108 QD(R =1 |2")],

Loss for GAN
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BACKGROUND

» Solution: self-supervised GAN (CVPR19)
Method

Loss for self-supervised learning

x" : Image a rotated by r degrees

R ={0,90,180,270 }
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BACKGROUND

» Solution: self-supervised GAN (CVPR19)

Method
Real / Fake
G(:)—»l D Pp(S )
Fake image |
|
| Shared
| weights
\\J\\\
|
( D —— Rotation degree
P {_.’1.')—’ / QplR|x")
Real image

' 270°
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BACKGROUND

» Solution: self-supervised GAN (CVPR19)
Method

LG = —V(G, D) — X 'Ea:NPG 'ETNR [10g QD(R =T ‘ .’.Br)] ]
Lp =V(G,D) - BEg~p Er~r [logQp(R=1|x")],

 NetD:
 Judge true/false on unrotated image.

 Judge rotation angle on rotated images.

19




BACKGROUND

» Solution: self-supervised GAN (CVPR19)
Method

LG — _V(G7 D) — 'E:BTNR [1Og QD(R =T ‘ mr)] )
Lp = V(G, D) ~ BEo{Ffrr log@p(R =1 | ")),

« NetG and netD:
» Collaborative on the rotation task.

o Adversarial on the GAN task.
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OUTLINE

» Proposed Method
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PROPOSED METHOD

» Problem of Auxiliary Rotation + GAN (CVPR19)

max V(D,C,G)=V(D,G) + A\ (EprgETkNT log (Ck(X)))

. J/

¥ (C)

m(%n V(D, C, G) — V(D, G) — )\g (EXNPEETkNT 1Og (Ck' (X))>

g J/

(G,C)
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PROPOSED METHOD

» Problem of Auxiliary Rotation + GAN (CVPR19)

C*: the optimal classifier for self-supervised task

iy - Pat (%)
<) SK  ple(x)

pF(x) : the probability of data sample

mén V(D,C,G) equals to maximizing:

(G, C") = ~ EK: E log< P (X) ) - iivgk(x)
k:1 - x~Fy Zlepg’“(x) - K
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PROPOSED METHOD

» Problem of Auxiliary Rotation + GAN (CVPR19)

min V(D,C,G) equals to maximizing:

G
K r T = K
1 Py (x) 1 T
G C* “XN T, log = — V(I)k (X)
;::1 - & <ZI§1 pdi (X)) K ;::1

A trick for netG to achieve the maximum is:
pl(x) #0andp.’ (x) = 0, # 1

A “loophole”, without actually learning the data distribution.
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PROPOSED METHOD

» Problem of Auxiliary Rotation + GAN (CVPR19)

P 2(x) P 1a(x) P ()

« The true distribution: P4

 What netG generates: xi, X1, X1 ...
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PROPOSED METHOD

» Problem of Auxiliary Rotation + GAN (CVPR19)
For example: a mode-collapsed generator.

Samples from one class

—®(G, C') on different classes

2.5 - l l
0.0-

Ggood Gairp/ane Gautomobi/e Gbird
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PROPOSED METHOD

» Solution

SS task in discriminator learning SS task in discriminator learning
— [c Ty SR o
Ty C1 X |:> Tk(X) |:> 02
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— 4 — Fake
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(a) Original SSGAN (b) Our proposal



PROPOSED METHOD

» Solution

max V(D, 0, G) = V(D, G)+Aq (EXNPgETkNTlog (Ck(X)) +ExprEr, 7 log (CK+1(X)))

\ .

v+ (G,C)

m(;n V(Da C, G) — V(Da G)_)‘g (EXNPJETICNT 1Og (Ck (X)) — ]EXNPg]ETk:NT lOg (CK—I—l(X)))

\

3+ (G,0)
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PROPOSED METHOD

» Theoretical Analysis

Proposition 2 For fixed generator G, the optimal solution C* under Eq. 8 is:

iy — PA(X) Pyt (%) Ot (x 0
k( ) pg(x) Zé{:lpgk(x) + ( ) ( )

where pg(x) and pgT(X) are probability of sample X in the mixture distributions Pf and PgT respec-
tively.

Theorem 2 Given optimal classifier C* obtained from multi-class minimax training ¥ (G, C), at
the equilibrium point, maximizing ® (G, C*) is equal to maximizing Eq. 11:

oT(G C*)——lliKL(PTk’!PT’“)]+1§:IE 10( pa* () )] (11)
| K k=1 ’ ! Kk:l Pyt 2{:1p§k(x)
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PROPOSED METHOD

» Theoretical Analysis

Proposition 2 For fixed generator G, the optimal solution C* under Eq. 8 is:

iy — PA(X) Pyt (%) Ot (x 0
k( ) pg(x) Zé{:lpgk(x) + ( ) ( )

where pg(x) and pgT(X) are probability of sample X in the mixture distributions Pg and PgT respec-
tively.

Theorem 2 Given optimal classifier C* obtained from multi-class minimax training ¥ (G, C), at
the equilibrium point, maximizing ® (G, C*) is equal to maximizing Eq. 11:

* - Tl T T (x)
P+ (G, C*) —H;KL(PQ 17" ( g_dlpgk(X))] (11)

new part
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PROPOSED METHOD

» Theoretical Analysis

Proposition 2 For fixed generator G, the optimal solution C* under Eq. 8 is:

iy — PA(X) Pyt (%) Ot (x 0
k( ) pg(x) Zé{:lpgk(x) + ( ) ( )

where pg(x) and pgT(X) are probability of sample X in the mixture distributions Pf and PgT respec-
tively.

Theorem 2 Given optimal classifier C* obtained from multi-class minimax training ¥ (G, C), at
the equilibrium point, maximizing ® (G, C*) is equal to maximizing Eq. 11:

1 [ py" (%)

1 (G, C*) —[ KL(PIx||P]*) d ] (11)
K kzzzzl ’ ! ( 2(:1 pgk (%) )

new part

KL(PTx||P/*¥) = KL(P,||P,) : rotation is an affine transform.

KL divergence is invariant under affine transform.
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PROPOSED METHOD

» Theoretical Analysis

Proposed SS tasks work together to improve the matching of
P, and P4 by leveraging the rotated samples

NetG has more feedbacks
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PROPOSED METHOD

» Experiments

Ggood (balanced generator) has the lowest loss

2.5 - l l
0.0-

Ggood Gairp/ane Gautomobi/e Gbird Gcat Gdog Gdeer Gfrog Ghorse Gship Gtruck

Loss

Ggood Gairplane Gautomobile Gbird Gcat Gdog Gdeer Gfrog Ghorse Gship Gtruck
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OUTLINE

» Experimental Results
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EXPERIMENTAL RESULTS

» Metric: Fréchet Inception Distance (FID)

» Dataset: CIFAR-10, STL-10
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EXPERIMENTAL RESULTS

» SS: CVPR19

» MS: Proposed

35
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EXPERIMENTAL RESULTS

Table 1: Comparison with other state-of-the-art GAN on CIFAR-10 and STL-10 datasets. We
report the best FID of the methods. Two network architectures are used: SN-GAN networks (CNN
architectures in [30]) and ResNet. The FID scores are extracted from the respective papers when
available. SS denotes the original SS tasks proposed in [4]. MS denotes our proposed self-supervised
tasks. “*’: FID 1s computed with 10K-10K samples as in [4]. All compared GAN are unconditional,
except SAGAN and BigGAN. SSGAN™ is SS-GAN in [4] but using the best parameters we have
obtained. In SSGAN™ + MS, we replace the original SS in author’s code with our proposed MS.

SN-GAN ResNet

Methods CIFAR-10 STL-10 CIFAR-10 STL-10 CIFAR-10"
GAN-GP [30] 37.7 - - - -
WGAN-GP [30] 40.2 55.1 - - -
SN-GAN [30] 25.5 43.2 21.70 £ .21 40.10 £ .50 19.73
SS-GAN [4] - - - - 15.65
Dist-GAN [41] 22.95 36.19 17.61 £.30 2850+ .49 13.01
GN-GAN [42] 21.70 30.80 16.47 £ .28 - -
SAGAN [47] (cond.) - - 13.4 (best) - -
BigGAN [2] (cond.) - - 14.73 - -
SSGAN™ - - - - 20.47
Ours(SSGAN™ + MS) - - - - 19.89
Dist-GAN + SS 21.40 29.79 1497 + .29 2798 & .38 12.37
Ours(Dist-GAN + MS) 18.88 27.95 13.90 + .22 27.10+.34 11.40




EXPERIMENTAL RESULTS

» Dataset: CIFAR-100, ImageNet 32X32

Datasets SS MS
CIFAR-100 (10K-5K FID) 21.02 19.74
ImageNet 32x32 (10K-10K FID) 17.1 12.3

» Dataset: Stacked MNIST (stacking 3 random digits)

Table 3: Comparing to state-of-the-art methods on Stacked MNIST with tiny K /4 and K /2 archi-
tectures [29]. We also follow the same experiment setup of [29]. Baseline model: Dist-GAN. SS:
proposed in [4]; MS: this work. Our method MS achieves the best results for this dataset with both
architectures, outperforming state-of-the-art [41, 17] by a significant margin.

Arch Unrolled GAN [29] WGAN-GP [13] Dist-GAN [41]  Pro-GAN [17] [41]+SS Ours([41]+MS)

K/4, # 372.2 4+ 20.7 640.1 £ 136.3 859.5 £ 68.7 859.5 £ 36.2 906.75 + 26.15 926.75 + 32.65
K/4, KL 4.66 £+ 0.46 1.97 £ 0.70 1.04 £+ 0.29 1.05 £ 0.09 0.90 + 0.13 0.78 £ 0.13

K/2, # 817.4 £ 399 7724 4 146.5 917.9 £ 69.6 919.8 £ 35.1 957.50 &+ 31.23 976.00 + 10.04
K/2, KL 1.43 £ 0.12 1.35 £ 0.55 1.06 £+ 0.23 0.82 £ 0.13 0.61 £+ 0.15 0.52 £+ 0.07
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» Conclusion
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CONCLUSION

» Theoretical analysis on auxiliary self-supervised + GAN

» Propose multi-class minimax game
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