Self-Supervised GAN: Analysis and Improvement With Multi-Class Minimax Game

Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Linxiao Yang, Ngai-Man Cheung NIPS 2019

OUTLINE

- ► Background
- ► Proposed Method
- ► Experimental Results
- ► Conclusion

OUTLINE

► Background

- Proposed Method
- Experimental Results
- ► Conclusion

- Self-Supervised Learning
- Discriminator Forgetting

- Self-Supervised Learning
- Discriminator Forgetting

- Self-Supervised Learning
- Unlabeled data \rightarrow Pretext
- Get supervision from the data itself.
 - Predict any part of the input from any other part.
 - Predict the future from the past.
 - Predict the future from the recent past.
 - Predict the past from the present.
 - Predict the top from the bottom.
 - Predict the occluded from the visible
 - Pretend there is a part of the input you don't know and predict that.

Self-Supervised Learning

Blog: <u>https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html</u>

7

- Self-Supervised Learning
- Rotation

- Self-Supervised Learning
- Discriminator Forgetting

- Image Classifier Forgetting
- Experiment:
 - The task of "1 v.s. all" classification.
 - Each class, train 1k iteration.
 - Then move to the next class.
- Result:
 - Each time the task switches, accuracy drops.
 - After 10k iterations, the cycle of tasks repeats.

- Image Classifier Forgetting
- Conclusion:
 - Classifier fail to learn generalizable representations in a non-stationary environment.

- Discriminator Forgetting
- Experiment:
 - Classifier trained with the final layer of a discriminator.

- ► Solution: self-supervised GAN (CVPR19)
- Image Classifier + Self-Supervision (Rotation)

- ► Solution: self-supervised GAN (CVPR19)
- GAN+ Self-Supervision (Rotation)

- ► Solution: self-supervised GAN (CVPR19)
- Method

$$L_G = -V(G, D) - \alpha \mathbb{E}_{\boldsymbol{x} \sim P_G} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_D(R = r \mid \boldsymbol{x}^r) \right],$$

$$L_D = V(G, D) - \beta \mathbb{E}_{\boldsymbol{x} \sim P_{\text{data}}} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_D(R = r \mid \boldsymbol{x}^r) \right],$$

► Solution: self-supervised GAN (CVPR19)

Method

$$L_{G} = -V(G, D) - \alpha \mathbb{E}_{\boldsymbol{x} \sim P_{G}} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_{D}(R = r \mid \boldsymbol{x}^{r}) \right],$$

$$L_{D} = V(G, D) - \beta \mathbb{E}_{\boldsymbol{x} \sim P_{\text{data}}} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_{D}(R = r \mid \boldsymbol{x}^{r}) \right],$$

Loss for GAN

► Solution: self-supervised GAN (CVPR19)

Method

$$L_{G} = -V(G, D) - \alpha \mathbb{E}_{\boldsymbol{x} \sim P_{G}} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_{D}(R = r \mid \boldsymbol{x}^{r}) \right],$$

$$L_{D} = V(G, D) - \beta \mathbb{E}_{\boldsymbol{x} \sim P_{\text{data}}} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_{D}(R = r \mid \boldsymbol{x}^{r}) \right],$$

Loss for self-supervised learning

$$\boldsymbol{x}^{r}$$
: Image \boldsymbol{x} rotated by r degrees
 $\mathcal{R} = \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}$

- ► Solution: self-supervised GAN (CVPR19)
- Method

► Solution: self-supervised GAN (CVPR19)

Method

$$L_{G} = -V(G, D) - \alpha \mathbb{E}_{\boldsymbol{x} \sim P_{G}} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_{D}(R = r \mid \boldsymbol{x}^{r}) \right],$$

$$L_{D} = V(G, D) - \beta \mathbb{E}_{\boldsymbol{x} \sim P_{\text{data}}} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_{D}(R = r \mid \boldsymbol{x}^{r}) \right],$$

- NetD:
 - Judge true/false on unrotated image.
 - Judge rotation angle on rotated images.

► Solution: self-supervised GAN (CVPR19)

Method

$$L_{G} = -V(G, D) - \alpha \mathbb{E}_{\boldsymbol{x}} \mathcal{P}_{G} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_{D}(R = r \mid \boldsymbol{x}^{r}) \right],$$

$$L_{D} = V(G, D) - \beta \mathbb{E}_{\boldsymbol{x} \sim P_{\text{data}}} \mathbb{E}_{r \sim \mathcal{R}} \left[\log Q_{D}(R = r \mid \boldsymbol{x}^{r}) \right],$$

- NetG and netD:
 - Collaborative on the rotation task.
 - Adversarial on the GAN task.

OUTLINE

► Background

- ► Proposed Method
- Experimental Results
- ► Conclusion

► Problem of Auxiliary Rotation + GAN (CVPR19)

$$\max_{D,C} \mathcal{V}(D,C,G) = \mathcal{V}(D,G) + \lambda_d \underbrace{\left(\mathbb{E}_{\mathbf{x}\sim P_d^T} \mathbb{E}_{T_k\sim\mathcal{T}} \log\left(C_k(\mathbf{x})\right)\right)}_{\Psi(C)}$$

$$\min_{G} \mathcal{V}(D, C, G) = \mathcal{V}(D, G) - \lambda_g \underbrace{\left(\mathbb{E}_{\mathbf{x} \sim P_g^T} \mathbb{E}_{T_k \sim \mathcal{T}} \log\left(C_k(\mathbf{x})\right)\right)}_{\Phi(G, C)}$$

- ► Problem of Auxiliary Rotation + GAN (CVPR19)
- *C**: the optimal classifier for self-supervised task

$$C_k^*(\mathbf{x}) = \frac{p_d^{T_k}(\mathbf{x})}{\sum_{k=1}^K p_d^{T_k}(\mathbf{x})}$$

 $p_d^{T_k}(\mathbf{x})$: the probability of data sample

• $\min_{G} \mathcal{V}(D, C, G)$ equals to maximizing:

$$\Phi(G, C^*) = \frac{1}{K} \sum_{k=1}^{K} \left[\mathbb{E}_{\mathbf{x} \sim P_g^{T_k}} \log \left(\frac{p_d^{T_k}(\mathbf{x})}{\sum_{k=1}^{K} p_d^{T_k}(\mathbf{x})} \right) \right] = \frac{1}{K} \sum_{k=1}^{K} \mathcal{V}_{\Phi}^{T_k}(\mathbf{x})$$

- ► Problem of Auxiliary Rotation + GAN (CVPR19)
- $\min_{G} \mathcal{V}(D, C, G)$ equals to maximizing:

$$\Phi(G, C^*) = \frac{1}{K} \sum_{k=1}^{K} \left[\mathbb{E}_{\mathbf{x} \sim P_g^{T_k}} \log \left(\frac{p_d^{T_k}(\mathbf{x})}{\sum_{k=1}^{K} p_d^{T_k}(\mathbf{x})} \right) \right] = \frac{1}{K} \sum_{k=1}^{K} \mathcal{V}_{\Phi}^{T_k}(\mathbf{x})$$

• A trick for netG to achieve the maximum is:

$$p_d^{T_1}(\mathbf{x}) \neq 0 \text{ and } p_d^{T_j}(\mathbf{x}) = 0, j \neq 1$$

• A "loophole", without actually learning the data distribution.

► Problem of Auxiliary Rotation + GAN (CVPR19)

- The true distribution: P_d
- What netG generates: x₁, x₁, x₁, ...

- ► Problem of Auxiliary Rotation + GAN (CVPR19)
- For example: a mode-collapsed generator.
 - Samples from one class

• $-\Phi(G,C)$ on different classes

Solution

(a) Original SSGAN

 C_1

 C_2

 C_3

 C_4

Fake

 C_1

 C_2

 C_3

 C_4

Fake

► Solution

$$\max_{D,C} \mathcal{V}(D,C,G) = \mathcal{V}(D,G) + \lambda_d \underbrace{\left(\mathbb{E}_{\mathbf{x}\sim P_d^T} \mathbb{E}_{T_k\sim\mathcal{T}} \log\left(C_k(\mathbf{x})\right) + \mathbb{E}_{\mathbf{x}\sim P_g^T} \mathbb{E}_{T_k\sim\mathcal{T}} \log\left(C_{K+1}(\mathbf{x})\right)\right)}_{\Psi^+(G,C)}$$

$$\min_{G} \mathcal{V}(D,C,G) = \mathcal{V}(D,G) - \lambda_g \left(\mathbb{E}_{\mathbf{x}\sim P_g^T} \mathbb{E}_{T_k\sim\mathcal{T}} \log\left(C_k(\mathbf{x})\right) - \mathbb{E}_{\mathbf{x}\sim P_g^T} \mathbb{E}_{T_k\sim\mathcal{T}} \log\left(C_{K+1}(\mathbf{x})\right)\right)$$

 $\Phi^+(G,C)$

Theoretical Analysis

Proposition 2 For fixed generator G, the optimal solution C^* under Eq. 8 is:

$$C_{k}^{*}(\mathbf{x}) = \frac{p_{d}^{T}(\mathbf{x})}{p_{g}^{T}(\mathbf{x})} \frac{p_{d}^{T_{k}}(\mathbf{x})}{\sum_{k=1}^{K} p_{d}^{T_{k}}(\mathbf{x})} C_{K+1}^{*}(\mathbf{x})$$
(10)

where $p_d^T(\mathbf{x})$ and $p_g^T(\mathbf{x})$ are probability of sample \mathbf{x} in the mixture distributions P_d^T and P_g^T respectively.

Theorem 2 Given optimal classifier C^* obtained from multi-class minimax training $\Psi^+(G, C)$, at the equilibrium point, maximizing $\Phi^+(G, C^*)$ is equal to maximizing Eq. 11:

$$\Phi^{+}(G, C^{*}) = -\frac{1}{K} \left[\sum_{k=1}^{K} \mathrm{KL}(P_{g}^{T_{k}} || P_{d}^{T_{k}}) \right] + \frac{1}{K} \sum_{k=1}^{K} \left[\mathbb{E}_{\mathbf{x} \sim P_{g}^{T_{k}}} \log\left(\frac{p_{d}^{T_{k}}(\mathbf{x})}{\sum_{k=1}^{K} p_{d}^{T_{k}}(\mathbf{x})}\right) \right]$$
(11)

Theoretical Analysis

1

Proposition 2 For fixed generator G, the optimal solution C^* under Eq. 8 is:

$$C_{k}^{*}(\mathbf{x}) = \frac{p_{d}^{T}(\mathbf{x})}{p_{g}^{T}(\mathbf{x})} \frac{p_{d}^{T_{k}}(\mathbf{x})}{\sum_{k=1}^{K} p_{d}^{T_{k}}(\mathbf{x})} C_{K+1}^{*}(\mathbf{x})$$
(10)

where $p_d^T(\mathbf{x})$ and $p_g^T(\mathbf{x})$ are probability of sample \mathbf{x} in the mixture distributions P_d^T and P_g^T respectively.

Theorem 2 Given optimal classifier C^* obtained from multi-class minimax training $\Psi^+(G, C)$, at the equilibrium point, maximizing $\Phi^+(G, C^*)$ is equal to maximizing Eq. 11:

$$\Phi^{+}(G, C^{*}) = -\frac{1}{K} \left[\sum_{k=1}^{K} \mathrm{KL}(P_{g}^{T_{k}} || P_{d}^{T_{k}}) \right] + \frac{1}{K} \sum_{k=1}^{K} \left[\mathbb{E}_{\mathbf{x} \sim P_{g}^{T_{k}}} \log \left(\frac{p_{d}^{T_{k}}(\mathbf{x})}{\sum_{k=1}^{K} p_{d}^{T_{k}}(\mathbf{x})} \right) \right]$$
(11)
new part

► Theoretical Analysis

1

Proposition 2 For fixed generator G, the optimal solution C^* under Eq. 8 is:

$$C_{k}^{*}(\mathbf{x}) = \frac{p_{d}^{T}(\mathbf{x})}{p_{g}^{T}(\mathbf{x})} \frac{p_{d}^{T_{k}}(\mathbf{x})}{\sum_{k=1}^{K} p_{d}^{T_{k}}(\mathbf{x})} C_{K+1}^{*}(\mathbf{x})$$
(10)

where $p_d^T(\mathbf{x})$ and $p_g^T(\mathbf{x})$ are probability of sample \mathbf{x} in the mixture distributions P_d^T and P_g^T respectively.

Theorem 2 Given optimal classifier C^* obtained from multi-class minimax training $\Psi^+(G, C)$, at the equilibrium point, maximizing $\Phi^+(G, C^*)$ is equal to maximizing Eq. 11:

$$\Phi^{+}(G, C^{*}) = -\frac{1}{K} \left[\sum_{k=1}^{K} \mathrm{KL}(P_{g}^{T_{k}} || P_{d}^{T_{k}}) \right] + \frac{1}{K} \sum_{k=1}^{K} \left[\mathbb{E}_{\mathbf{x} \sim P_{g}^{T_{k}}} \log \left(\frac{p_{d}^{T_{k}}(\mathbf{x})}{\sum_{k=1}^{K} p_{d}^{T_{k}}(\mathbf{x})} \right) \right]$$
(11)
new part

 $\operatorname{KL}(P_g^{T_k}||P_d^{T_k}) = \operatorname{KL}(P_g||P_d)$: rotation is an affine transform.

KL divergence is invariant under affine transform.

- ► Theoretical Analysis
- Proposed SS tasks work together to improve the matching of P_g and P_d by leveraging the rotated samples
- NetG has more feedbacks

► Experiments

• G_{good} (balanced generator) has the lowest loss

OUTLINE

- ► Background
- Proposed Method
- ► Experimental Results
- ► Conclusion

EXPERIMENTAL RESULTS

- ► Metric: Fréchet Inception Distance (FID)
- ► Dataset: CIFAR-10, STL-10

EXPERIMENTAL RESULTS

- ► SS: CVPR19
- ► MS: Proposed

Table 1: Comparison with other state-of-the-art GAN on CIFAR-10 and STL-10 datasets. We report the best FID of the methods. Two network architectures are used: **SN-GAN** networks (CNN architectures in [30]) and **ResNet**. The FID scores are extracted from the respective papers when available. **SS** denotes the original SS tasks proposed in [4]. **MS** denotes our proposed self-supervised tasks. '*': FID is computed with 10K-10K samples as in [4]. All compared GAN are unconditional, except SAGAN and BigGAN. SSGAN⁺ is SS-GAN in [4] but using the best parameters we have obtained. In SSGAN⁺ + MS, we replace the original **SS** in author's code with our proposed **MS**.

	SN-GAN		ResNet		
Methods	CIFAR-10	STL-10	CIFAR-10	STL-10	CIFAR-10*
GAN-GP [30]	37.7	-	-	-	-
WGAN-GP [30]	40.2	55.1	-	-	-
SN-GAN [30]	25.5	43.2	$21.70\pm.21$	$40.10\pm.50$	19.73
SS-GAN [4]	-	-	-	-	15.65
Dist-GAN [41]	22.95	36.19	$17.61\pm.30$	$28.50\pm.49$	13.01
GN-GAN [42]	21.70	30.80	$16.47 \pm .28$	-	-
SAGAN [47] (cond.)	-	-	13.4 (best)	-	-
BigGAN [2] (cond.)	-	-	14.73	-	-
SSGAN ⁺	_	-	-	-	20.47
Ours(SSGAN ⁺ + MS)	-	-	-	-	19.89
Dist-GAN + SS	21.40	29.79	$14.97 \pm .29$	$27.98 \pm .38$	12.37
Ours(Dist-GAN + MS)	18.88	27.95	$\textbf{13.90} \pm \textbf{.22}$	$\textbf{27.10} \pm \textbf{.34}$	11.40

EXPERIMENTAL RESULTS

► Dataset: CIFAR-100, ImageNet 32×32

Datasets	SS	MS
CIFAR-100 (10K-5K FID)	21.02	19.74
ImageNet 32×32 (10K-10K FID)	17.1	12.3

Dataset: Stacked MNIST (stacking 3 random digits)

Table 3: Comparing to state-of-the-art methods on Stacked MNIST with tiny K/4 and K/2 architectures [29]. We also follow the same experiment setup of [29]. Baseline model: Dist-GAN. SS: proposed in [4]; MS: this work. Our method MS achieves the best results for this dataset with both architectures, outperforming state-of-the-art [41, 17] by a significant margin.

Arch	Unrolled GAN [29]	WGAN-GP [13]	Dist-GAN [41]	Pro-GAN [17]	[41]+SS	Ours([41]+MS)
K/4, #	372.2 ± 20.7	640.1 ± 136.3	859.5 ± 68.7	859.5 ± 36.2	906.75 ± 26.15	926.75 ± 32.65
K/4, KL	4.66 ± 0.46	1.97 ± 0.70	1.04 ± 0.29	1.05 ± 0.09	0.90 ± 0.13	0.78 ± 0.13
K/2, #	817.4 ± 39.9	772.4 ± 146.5	917.9 ± 69.6	919.8 ± 35.1	957.50 ± 31.23	976.00 ± 10.04
K/2, KL	1.43 ± 0.12	1.35 ± 0.55	1.06 ± 0.23	0.82 ± 0.13	0.61 ± 0.15	0.52 ± 0.07

OUTLINE

- ► Background
- Proposed Method
- Experimental Results
- ► Conclusion

CONCLUSION

- ► Theoretical analysis on auxiliary self-supervised + GAN
- Propose multi-class minimax game