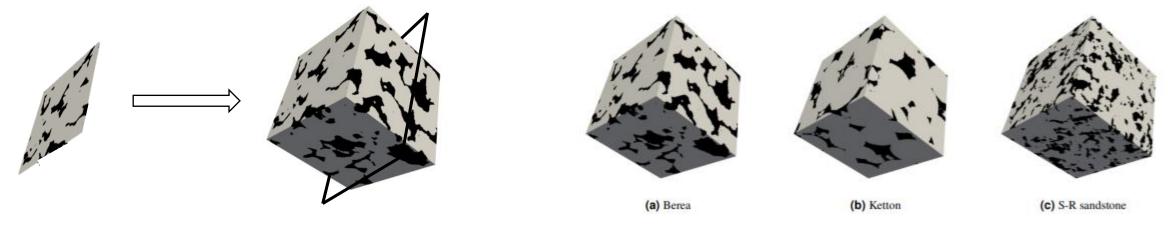
Reconstruction of 3D Porous Media From 2D Slices

高园园 工学院 1801111733

Introduction

Slice to Pores Generative Adversarial Networks(SPGAN):

Use a 2D slice as an input to generate a 3D image



SPGAN

Different sandstones

GAN

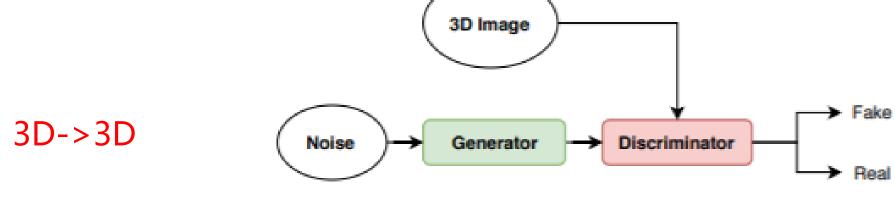


Figure 12. Architecture of Generative Adversarial Networks

$$\text{Loss:} \qquad \min_{\theta} \max_{\phi} \mathscr{L}(\theta, \phi) = \mathbb{E}_{x \sim p_{\mathtt{data}}}[\log D_{\phi}(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D_{\phi}(G_{\theta}(z)))].$$

SPGAN

 $2D \rightarrow 3D$ $p_{data}(x|s)$

x: 3D porous media

s: 2D slice

condition: class

Condition GAN

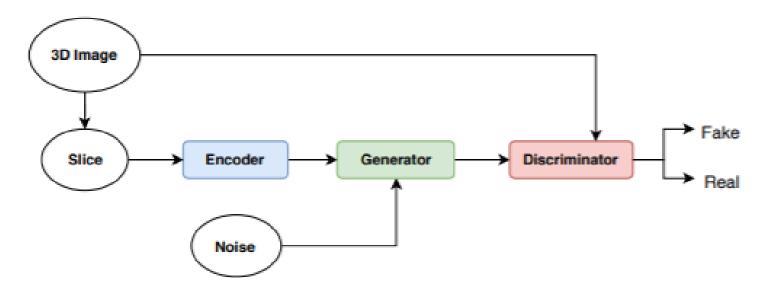


Figure 13. Architecture of Slice to Pores Generative Adversarial Networks

SPGAN

slice compression:

- specific porous structure
- regular shapes

$$L(s) = \parallel s - \mathbf{M} \odot G_{\theta}(E_{\tau}(s), z) \parallel_{2}^{2} \rightarrow \min_{\tau, \theta}$$

Encoder: $E_{ae}(x_i, \theta_E)$ Generator $G_{\theta}(z, h)$

Obtain the central slice from the 3D image **M**

2D autoencoder

Slice Encoder Generator Discriminator Real

Noise 3D DCGAN

Figure 13. Architecture of Slice to Pores Generative Adversarial Networks

$$L(D_{\phi},G_{\theta}) = \mathbb{E}_{x \sim p_{data}(x)}[\log D_{\phi}(x)] + \mathbb{E}_{z \sim p_{noise}(z)}[\log (1 - D_{\phi}(G_{\theta}(E_{\tau}(s),z)))] \rightarrow \min_{\theta} \max_{\phi}.$$

Encoder $E_t(s)$

Discriminator $D_{\phi}(x)$

SPGAN

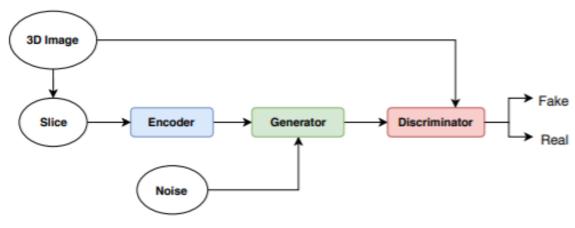


Figure 13. Architecture of Slice to Pores Generative Adversarial Networks

for number of training iterations do

Sample minibatch of k 3D images $\{x_1, \ldots, x_k\}$ from the dataset; Obtain the minibatch of slices $\{s_1 = \mathbf{M} \odot x_1, \ldots, s_k = \mathbf{M} \odot x_k\}$, using the mask \mathbf{M} ; Sample minibatch of k noise vectors $\{z_1, \ldots, z_k\}$ from the prior distribution $p_z(z)$; Update the encoder by ascending its stochastic gradient

$$\nabla_{\tau} \frac{1}{k} \sum_{i=1}^{k} \| s_i - \mathbf{M} \odot G_{\theta}(E_{\tau}(s_i), z_i) \|_2^2$$

Update the generator by ascending its stochastic gradient

$$\nabla_{\boldsymbol{\theta}} \frac{1}{k} \sum_{i=1}^{k} \| s_i - \mathbf{M} \odot G_{\boldsymbol{\theta}}(E_{\tau}(s_i), z_i) \|_2^2$$

Obtain the minibatch of latent representations $\{h_1 = E_{\tau}(s_1), \ldots, h_k = E_{\tau}(s_k)\}$; Update the discriminator by ascending its stochastic gradient

$$\nabla_{\phi} \frac{1}{k} \sum_{i=1}^{k} \left[\log D_{\phi}(x_i) + \log(1 - D_{\phi}(G_{\theta}(z_i, h_i))) \right]$$

Update the generator by descending its stochastic gradient

$$\nabla_{\theta} \frac{1}{k} \sum_{i=1}^{k} \left[\log(1 - D_{\phi}(G_{\theta}(z_i, h_i))) \right].$$

end

Algorithm 1: Algorithm of training SPGAN model

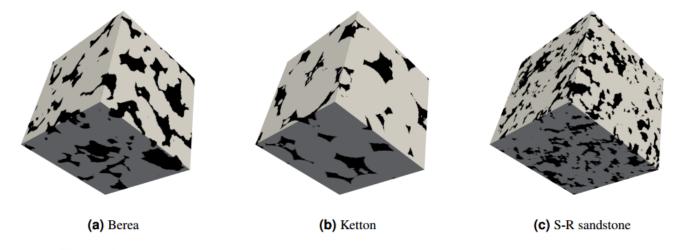


Figure 2. Original 3D samples of three different types: Berea, Ketton, South-Russian sandstone

Feature extract:

- Porosity
- Permeability
- Two-point correlation function

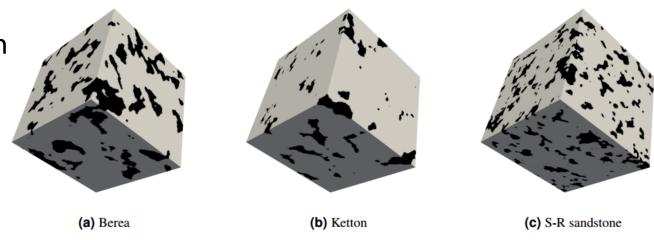


Figure 3. Generated 3D samples of three different types: Berea, Ketton, South-Russian sandstone

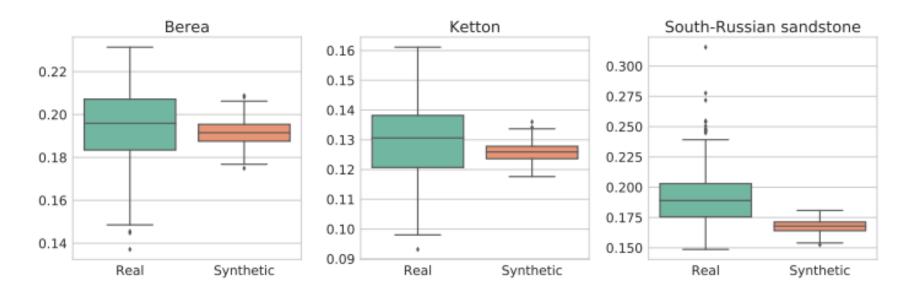
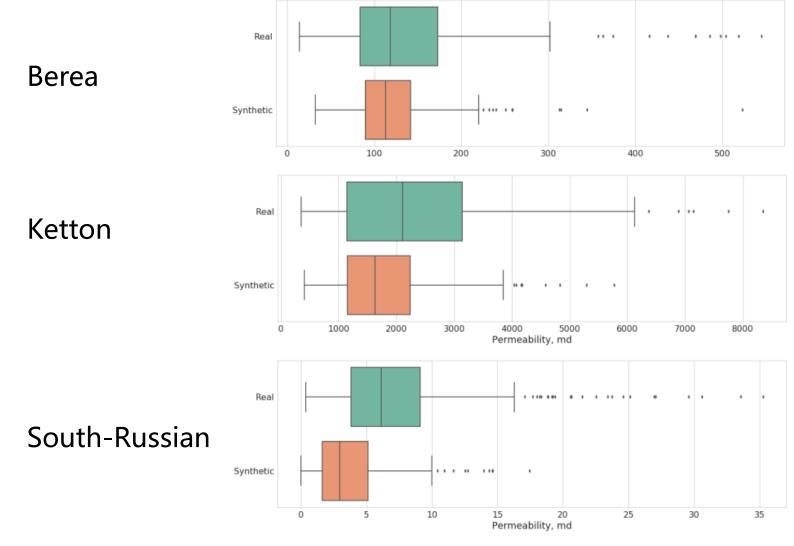


Figure 4. Porosity comparison for three types of porous media. Each type is represented by 300 real and 300 generated samples. For each sample we computed porosity and created box-plot.



Permeability for sandstones

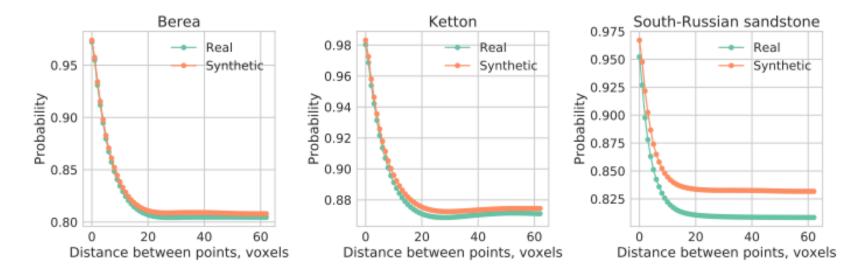


Figure 5. Two-Point Correlation Function. For each type of porous media we for both real and synthetic samples we compute probability, that a distance between two points will lie inside the void space. We used PoresPy library ¹⁷ for computations.

Conclusion:

1. Our decoder is a 3D convolutional neural network, thus we should be able to get the central 2D slice from it, 2. Decoder takes as an input not only latent representation but also a noise vector from some prior distribution pz(z).

QA