Reconstruction of 3D Porous Media
From 2D Slices

SkER Tk 1801111733




Introduction

Slice to Pores Generative Adversarial Networks(SPGAN):
Use a 2D slice as an input to generate a 3D image
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Figure 12. Architeciure of Generative Adversarial Networks

Loss: minmax .Z(0,9) = E;p,,.. [log Dy (x)] +E.p, [log(1 — Dy(Gg(z))))-
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Figure 13. Architecture of Slice to Pores Generative Adversarial Networks
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SPGAN

slice compression:
* specific porous structure
* regular shapes
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Obtain the central slice from the 3D image M
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Figure 13. Architecture of Slice to Pores Generative Adversarial Networks
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Figure 13. Architecture of Slice to Pores Generative Adversarial Networks

for number of training iterations do

Sample minibatch of k 3D images {x;,....: xx } from the dataset;
Obtain the minibatch of slices {s; = M @ xy,...,5t = M x; }, using the mask M;
Sample minibatch of k noise vectors {zy...., 2z } from the prior distribution p.(z):

Update the encoder by ascending its stochastic gradient

. , ,
Vr;g | si — M ® Go(Ee(si),z) |13

Update the generator by ascending its stochastic gradient
I x
Voz Z | 5i = M@ Go(E(s:),2) |15

=1

Obtain the minibatch of latent representations {h; = E.(sy), ..., hy = E.(s5¢) }:
Update the discriminator by ascending its stochastic gradient

k
2 log Dy (x;) + log(1 — Dy (G (2, 1i)))]
=1

Update the generator by descending its stochastic gradient
- _
Vor Y [log(1 —Dy(Go(zi,1))]

=1

Algorithm 1: Algorithm of training SPGAN model



Result

(a) Berea (b) Ketton (c) S-R sandstone

Figure 2. Original 3D samples of three different types: Berea, Ketton, South-Russian sandstone

Feature extract:

« Porosity

« Permeability

« Two-point correlation function

(a) Berea (b) Ketton (c) S-R sandstone

Figure 3. Generated 3D samples of three different types: Berea, Ketton, South-Russian sandstone
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Flgura 4. Porosity comparison for three types of porous media. Each type is represented by 300 real and 300 generated
samples. For each sample we computed porosity and created box-plot.
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Figure 5. Two-Point Correlation Function. For each type of porous media we for both real and synthetic samples we compute
probability, that a distance between two points will lie inside the void space. We used PoresPy library'” for computations.



Conclusion:

1. Our decoder is a 3D convolutional neural network, thus
we should be able to get the central 2D slice from it,

2. Decoder takes as an input not only latent representation
but also a noise vector from some prior distribution pz(z).
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