
>>> Paper Reading: LSGAN
>>> Least Squares Generative Adversarial Networks, ICCV 2017.

On the Effectiveness of LSGANs, TPAMI 2019.

Name: 李喆琛 信息科学技术学院
初济群 数学科学学院

Date: 2020.05.14 → 第十三周·第七场

[~]$ _ [1/17]



>>> Outline

1. Regular GAN and Least Squares GAN

2. Why is LSGAN better?

3. Theoretical Analysis

4. Deficiencies of LSGAN

[~]$ _ [2/17]



>>> Regular Generative Adversarial Networks I

Objective function of regular GAN

min
G

max
D

VGAN(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼px(z)[log(1−D(G(z)))]

Why using sigmold cross entropy loss function?
Real distribution p, Fake distribution q.
* Information entropy: H(p) = −

∑
i p(i) · log p(i);

* H(p) ↑, Uncertainty ↑.
* Cross entropy: H(p, q) = −

∑
i p(i) · log q(i);

* H(p, q) ↑, Difference ↑.

The KL divergence D(p|q) = H(p, q)−H(p) is a way to measure
the distance between two distributions p and q.
* it comes to its minimum point when p = q.

Thus, GAN minimizes KL divergence.
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>>> Regular Generative Adversarial Networks II

A problem: vanishing gradients
When D is closing to its optimal point D∗, the gradient of G
is also clossing to zeros, that is :

∇xEz∼p(z)[log(1−D(G(z)))] ≈ 0

As Pr and Pg are two low dimension manifolds, discriminator D
is easy to train, and thus closing to optimal point D∗

quickly.

How to get over it ?

* Method: improved GAN
* problem: Oscillations and Mode Collapse

However, LSGAN don't have both the problems of vanilla GAN
and improved GAN theorecitally.
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>>> Least Squares Generative Adversarial Networks

Sigmoid cross entropy → Least squares loss function

Objective function of LSGAN

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− b)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z))− a)2

]
min
G

VLSGAN(G) =
1

2
Ez∼pz(z)

[
(D(G(z))− c)2

]

The Parameters

* a: labels for fake data; Discriminator
* b: labels for real data; Discriminator
* c: values that G wants D to believe. Generator
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>>> Why is LSGAN better? I

More difficult to saturate → Better stability

Figure: Sigmoid y = − log(1− 1
1+ex ) vs. Least Square y = (x− 1)2

* Least squares loss function is flat only at one point;
* Sigmoid cross entropy will saturate when x is large.
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>>> Why is LSGAN better? II

Tougher penalties → Higher Quailty

Figure: Real Samples → Orange, Fake Samples → Blue
* Vanilla GAN: ∇ in GREEN → Little error

* Leads to the problem of Vanishing Gradients.

* Improved GAN: I in PINK → Little error
* Leads to the problem of Mode Collapse.

* Least Squares: Penalize samples far from the boundary.
* Forces G to generate samples toward decision boundary.
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>>> Comparison of the results

Steps 0 5k 15k 25k 40k Target

LSGAN

NSGAN

FID Results on Four Datasets

Method LSUN Cat ImageNet CIFAR10

NS-GAN 28.04 15.81 74.15 35.25
WGAN-GP 22.77 29.03 62.05 40.83
LSGAN(011) 27.21 15.46 72.54 36.46

LSGAN(−110) 21.55 14.28 68.95 35.19
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>>> Relation to Pearson χ2 Divergence I

Consider the following extensions:

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− b)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z))− a)2

]
min
G

VLSGAN(G) =
1

2
Ex∼pdata(x)

[
(D(x)− c)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z))− c)2

]
* Note that Ex∼pdata(x)

[
(D(x)− c)2

]
does not contain G.

Optimal Discriminator
For a fixed G, the optimal discriminator D is:

D∗(x) =
bpdata(x) + apg(x)

pdata(x) + pg(x)

[3. Theoretical Analysis]$ _ [9/17]



>>> Relation to Pearson χ2 Divergence II

Proof of the optimal discriminator
In fact, we are trying to minimize V (D):

V (D) =
1

2
Ex∼pdata

[
(D(x)− b)2

]
+

1

2
Ez∼pz

[
(D(G(z))− a)2

]
=

1

2
Ex∼pdata

[
(D(x)− b)2

]
+

1

2
Ex∼pg

[
(D(x)− a)2

]
=

∫
X

1

2

(
pdata (x)(D(x)− b)2 + pg(x)(D(x)− a)2

)
dx ← Denoted by Y

Let its derivative be zero:
dY

dD(x)
= pdata (x)(D(x)− b) + pg(x)(D(x)− a) = 0

Then we have:

D(x) =
bpdata(x) + apg(x)

pdata(x) + pg(x)
← Denoted by D∗(x)

In other word, D∗(x) minimizes V (D). □
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>>> Relation to Pearson χ2 Divergence III

Theorem. Optimizing LSGANs yields minimizing Pearson χ2

divergence between pd + pg and pg, if b− c = 1, and b− a = 2.
Proof. Substitute D∗(x) into the equation:

2C(G) = Ex∼pd

[
(D∗(x)− c)

2
]
+ Ez∼pz

[
(D∗(G(z))− c)

2
]

= Ex∼pd

[
(D∗(x)− c)

2
]
+ Ex∼pg

[
(D∗(x)− c)

2
]

= Ex∼pd

[(
bpd(x) + apg(x)

pd(x) + pg(x)
− c

)2
]
+ Ex∼pg

[
(· · · )2

]
=

∫
X
pd(x)

(
(b− c)pd(x) + (a− c)pg(x)

pd(x) + pg(x)

)2

dx+

∫
X
pg(x) (· · · )2 dx

=

∫
X

((b− c)pd(x) + (a− c)pg(x))
2

pd(x) + pg(x)
dx
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>>> Relation to Pearson χ2 Divergence IV

Let b− c = 1, b− a = 2, we have:

2C(G) =

∫
X

((b− c) (pd(x) + pg(x))− (b− a)pg(x))
2

pd(x) + pg(x)
dx

=

∫
X

(2pg(x)− (pd(x) + pg(x)))
2

pd(x) + pg(x)
dx

= χ2
Pearson (pd + pg∥2pg)

That proves the theorem. □

[3. Theoretical Analysis]$ _ [12/17]



>>> Parameters Selection

Let b− c = 1, b− a = 2 ⇒ Minimizing Pearson χ2 Divergence
For example, a = −1, b = 1, c = 0:

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− 1)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z)) + 1)2

]
min
G

VLSGAN(G) =
1

2
Ez∼pz(z)

[
(D(G(z)))2

]

Let b = c ⇒ Generating samples as real as possible
For example, a = 0, b = −1, c = −1:

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− 1)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z)))2

]
min
G

VLSGAN(G) =
1

2
Ez∼pz(z)

[
(D(G(z))− 1)2

]
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>>> Better than regular GAN, but not good enough I

If D is good enough, the problem still exists
Without loss of generality, let c = 0,
then the optimal discriminator is:

D∗ =
bPd + aPg

Pd + Pg

Plug it into the extended loss function:

VLSGAN(G) =
1

2
Ex∼pd(x)

[
D∗(x)2

]
+

1

2
Ex∼pg(x)

[
D∗(x)2

]
If supp pd and supp pg are low dimensional manifolds in high
dimensional space, we have

P[µ(supp pd ∩ supp pg) = 0] = 1 (1)
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>>> Better than regular GAN, but not good enough II
For a given x, there are only four cases:
1. pd(x) = 0, pg(x) = 0: We can ignore this case;
2. pd(x) ̸= 0, pg(x) = 0: D∗(x) = a, VLSGAN is a constant;
3. pd(x) = 0, pg(x) ̸= 0: D∗(x) = b, VLSGAN is a constant;
4. pd(x) ̸= 0, pg(x) ̸= 0: Will not happen due to Equ (1).

Gradients vanish again!
For LSGANs, if:
* Equ (1) holds; (Support sets are disjoint)
* Discriminator D is good enough; (very close to D∗)

then the loss will be zero → Gradient vanish.

Another point of view: WGAN (Wasserstein metric)
Not Lipschitz continuous → Vanishing gradients.
To conclude, LSGAN cannot solve the problem completely.
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>>> To summarize

1. What is LSGAN:
1.1 Sigmoid cross entropy → Least squares;

2. Benifits of LSGAN:
2.1 Better stability;
2.2 Higher quailty;
2.3 Partially solves the problem of vanishing gradients;

3. Theoretical Properties:
3.1 Convergence: LSGAN minimizes Pearson χ2 Divergence;

4. Deficiencies of LSGAN:
4.1 Cannot solve the problem of completely.
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Thanks For Listening!
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