>>> Paper Reading: LSGAN
>>> Least Squares Generative Adversarial Networks, ICCV 2017.
On the Effectiveness of LSGANs, TPAMI 2019.

Name - BER BERMFEAFR
T ORIuEEE BEMFF I

Date: 2020.05.14 — #+=J -+« £+t

[-1$ _ [1/17]



>>> Outline

1. Regular GAN and Least Squares GAN

2. Why is LSGAN better?

3. Theoretical Analysis

4. Deficiencies of LSGAN

[-1$ _ [2/17]



>>> Regular Generative Adversarial Networks I

Objective function of regular GAN
minmax Vaan (D, G) = By () 108 D@)] + e o) l0g(1 —~ D(G(2)))]

Why using sigmold cross entropy loss function?
Real distribution p, Fake distribution gq.
* Information entropy: H(p)=—),p(i) - logp(i);
* H(p) 1, Uncertainty 7.

* Cross entropy: H(p,q) =—) ,;p(i)-logq(i);
* H(p,q) T, Difference 1.

The KL divergence D(p|q) = H(p,q) — H(p) is a way to measure
the distance between two distributions p and gq.

* it comes to its minimum point when p =gq.

Thus, GAN minimizes KL divergence.
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>>> Regular Generative Adversarial Networks II

A problem: vanishing gradients

When D is closing to its optimal point D*, the gradient of G
is also clossing to zeros, that is

Ve E,pzllog(l — D(G(2)))] = 0

As P, and P, are two low dimension manifolds, discriminator D
is easy to train, and thus closing to optimal point D*
quickly.

How to get over it 7

* Method: improved GAN

* problem: Oscillations and Mode Collapse

However, LSGAN don't have both the problems of vanilla GAN
and improved GAN theorecitally.
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>>> Least Squares Generative Adversarial Networks

Sigmoid cross entropy — Least squares loss function

Objective function of LSGAN

min Visoan(D) = 2Espunte) [(D@) = 0] + 3Es ) [(D(G(2)) — )]

min Visoan(G) = 3Eanp o) [(D(G(2)) )]

The Parameters
* q: labels for fake data; Discriminator
* b: labels for real data; Discriminator

* c¢: values that G wants D to believe. Generator
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>>> Why is LSGAN better? I

Figure: Sigmoid y = —log(l — vs. Least Square y = (v —1)?

1
5o

* Least squares loss function is flat only at one point;

* Sigmoid cross entropy will saturate when z is large.
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>>> Why is LSGAN better? II

Figure: Real Samples — Orange, Fake Samples —
* Vanilla GAN: V in — Little error
Leads to the problem of Vanishing Gradients.

* Improved GAN: v in PINK — Little error
Leads to the problem of Mode Collapse.

* Least Squares: Penalize samples far from the boundary.

Forces (G to generate samples toward decision boundary.
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>>> Comparison of the results

0

5k 15k

Steps 40k Target

LSGAN

25k

NSGAN

Method LSUN Cat ImageNet CIFAR10
NS-GAN 28.04 15.81 74.15 35.25
WGAN-GP 2277 29.03 62.05 40.83
LSGAN(g11) 27.21 15.46 72.54 36.46

LSGAN(_1;9) 21.55 14.28  68.95 35.19
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>>> Relation to Pearson X2 Divergence I

Consider the following extensions:

min Visgan (D) = EEMW@ [(D(z) —b)*] + 1IEZNPZ(Z) [(D(G(2)) — a)?]
D 2 2

min Visaan(G) = lEa-prm [(D(z) - ¢)?] + EIEz~pz(z) [(D(G(2)) - ¢)]
@ 2 2

* Note that E,.,, () [(D(z) —c)?] does not contain G.

Optimal Discriminator

For a fixed (G, the optimal discriminator D is:

_ bpdata(w) + apg(x)
pdata(x) + Pg (JZ)

D*(x)
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>>> Relation to Pearson X2 Divergence II

Proof of the optimal discriminator
In fact, we are trying to minimize V(D):

Eanpina [(D@) = 8] + 5Eamp. [(D(G(2)) - )]
AEapan [(D() = D] + 5Eanp, [(D(@) — 0)’]
+

= [ 5 (rass @ (D) 7

V(D) =5
1
2
pg(2)(D(z) — a)?)da < Denoted by Y

Let its derivative be zero:

dY

dD() ~ P (z)(D(z) — b) + pg(z)(D(z) —a) =0

Then we have:

bpdata(x) + apg (13)

< Denoted by D*(z
Paotn (@) & 15 (2) y D@

D(z) =

In other word, D*(z) minimizes V(D). O
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>>> Relation to Pearson X2 Divergence III

Theorem. Optimizing LSGANs yields minimizing Pearson X2
divergence between pq +p, and p,, if b—c=1, and b—a = 2.

Proof. Substitute D*(x) into the equation:

20(G) = Eanpy [(D*(@) = O] +Exny. |(D*(G(2)) - o]
= By, [(D*(@) — 0] + Eun, [(D*(@) — o)

'(bpdoc) + apy(2) )
| pa@) 7, @)
~ (b = c)pa(a) + (a — py(e)\? )

—/Xpd@c)( e ) aot [ pyfe) (o

_ [ eomt) o Ipy(@)’ |
v @) T pe@)

= EINPd + EZNPg [( o )2}
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>>> Relation to Pearson X2 Divergence IV

Let b—c=1, b—a =2, we have:

_ [ ((b=¢) (pa(x) + py(x)) — (b — a)py(x))”
206)= [, Pa(@) + po() &
- [ Cnte) = st e,
X pa(z) + py(z)
- Xl%earson (pd +ng2pg>

That proves the theorem. U

[3. Theoretical Analysis]$ _ [12/17]



>>> Parameters Selection

Let b—c=1, b—a=2 = Minimizing Pearson Y? Divergence
For example, a=—-1, b=1, ¢=0:

min Viscan (D) = %Ewdm(m) [(D(z) — 1)?] + %Emz(z) (D(G(=)) + 1)?]

min Visaan(G) = %]E%pz(z) [(D(G(2)))?]

Let b= c = Generating samples as real as possible
For example, a=0, b=—-1, ¢c=—1:
. 1 1
min Visaan(D) = 5Eanpya(e) [(D(@) = 1)?] + 5Bz, () [(D(G(2)))7]
; 1
min Viscan(G) = §Ez~pz(z) [(D(G(2)) = 1)*]
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>>> Better than regular GAN, but not good enough I

If D is good enough, the problem still exists

Without loss of generality, let c¢=0,
then the optimal discriminator is:

D* . de +an
- Py+ PR

Plug it into the extended loss function:

1 ) 1 %
VLSGAN(G) = gExwpd(z) [D (I)2] + QEprg(a:) [D ($)2]
If supp pq and supp p, are low dimensional manifolds in high

dimensional space, we have

Plu(supp pa Nsupp pg) =0 =1 (1)
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>>> Better than regular GAN, but not good enough II

For a given x, there are only four cases:

1. pa(z) =0, pg(x) =0: We can ignore this case;

N

pa(z) (z) =
3. pa(x) = 0 pg(z) #0: D*(x) =b, Visgan is a constant;
4. pa(xz) #0, pg(x) #0: Will not happen due to Equ (1).

Gradients vanish again!
For LSGANs, if:
* Equ (1) holds; (Support sets are disjoint)
* Discriminator D 4is good enough; (very close to D*)

then the loss will be zero — Gradient vanish.

Another point of view: WGAN (Wasserstein metric)
Not Lipschitz continuous — Vanishing gradients.

To conclude, LSGAN cannot solve the problem completely.
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>>> To summarize

1. What %s LSGAN:
1.1 Sigmoid cross entropy — Least squares;
2. Benifits of LSGAN:

2.1 Better stability;
2.2 Higher quailty;
2.3 Partially solves the problem of vanishing gradients;

3. Theoretical Properties:
3.1 Convergence: LSGAN minimizes Pearson x? Divergence;

4. Deficiencies of LSGAN:
4.1 Cannot solve the problem of completely.
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Thanks For Listening!
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