

- >>> Paper Reading: LSGAN
- >>> Least Squares Generative Adversarial Networks, ICCV 2017. On the Effectiveness of LSGANs, TPAMI 2019.
- Name:
 李喆琛
 信息科学技术学院

 初济群
 数学科学学院
- Date: 2020.05.14 → 第十三周•第七场

>>> Outline

- 1. Regular GAN and Least Squares GAN
- 2. Why is LSGAN better?
- 3. Theoretical Analysis
- 4. Deficiencies of LSGAN

Objective function of regular GAN

 $\overline{\min_{G} \max_{D} V_{\text{GAN}}(D, G)} = \overline{\mathbb{E}_{x \sim p_{\text{data}}(x)}[\log D(x)]} + \overline{\mathbb{E}_{z \sim p_{x}(z)}[\log(1 - D(G(z)))]}$

Why using sigmold cross entropy loss function? Real distribution p, Fake distribution q.

- * Information entropy: $H(p) = -\sum_i p(i) \cdot \log p(i);$
 - * $H(p)\uparrow$, Uncertainty \uparrow .
- * Cross entropy: $H(p,q) = -\sum_i p(i) \cdot \log q(i);$
 - * $H(p,q)\uparrow$, Difference \uparrow .

The KL divergence D(p|q) = H(p,q) - H(p) is a way to measure the distance between two distributions p and q.

* it comes to its minimum point when $p=q\,.$

Thus, GAN minimizes KL divergence.

^{[1.} Regular GAN and Least Squares GAN]\$ _

>>> Regular Generative Adversarial Networks II

A problem: vanishing gradients

$$\nabla_x E_{z \sim p(z)} [\log(1 - D(G(z)))] \approx 0$$

As P_r and P_g are two low dimension manifolds, discriminator D is easy to train, and thus closing to optimal point D^\ast quickly.

How to get over it ?

- * Method: improved GAN
- * problem: Oscillations and Mode Collapse

However, LSGAN don't have both the problems of vanilla GAN and improved GAN theorecitally.

>>> Least Squares Generative Adversarial Networks

Sigmoid cross entropy \rightarrow Least squares loss function Objective function of LSGAN

$$\min_{D} V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[(D(x) - b)^2 \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) - a)^2 \right]$$
$$\min_{G} V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) - c)^2 \right]$$

The Parameters

* a: labels for fake data;
* b: labels for real data;
* c: values that G wants D to believe.
Generator

>>> Why is LSGAN better? I

More difficult to saturate ightarrow Better stability

Figure: Sigmoid $y = -\log(1 - \frac{1}{1 + e^x})$ vs. Least Square $y = (x - 1)^2$

* Least squares loss function is flat only at one point; * Sigmoid cross entropy will saturate when x is large.

>>> Why is LSGAN better? II

Tougher penalties \rightarrow Higher Quailty

Figure: Real Samples \rightarrow Orange, Fake Samples \rightarrow Blue * Vanilla GAN: ∇ in (1995) \rightarrow Little error

* Leads to the problem of Vanishing Gradients.

- * Improved GAN: lpha in PINK ightarrow Little error
 - * Leads to the problem of Mode Collapse.
- * Least Squares: Penalize samples far from the boundary.
 * Forces G to generate samples toward decision boundary.

>>> Comparison of the results

FID Results on Four Datasets

Method	LSUN	Cat	ImageNet	CIFAR10
NS-GAN	28.04	15.81	74.15	35.25
WGAN-GP	22.77	29.03	62.05	40.83
$\texttt{LSGAN}_{(011)}$	27.21	15.46	72.54	36.46
$LSGAN_{(-110)}$	21.55	14.28	68.95	35.19

>>> Relation to Pearson χ^2 Divergence I

Consider the following extensions:

$$\begin{split} & \min_{D} V_{\mathrm{LSGAN}}(D) = \frac{1}{2} \mathbb{E}_{x \sim p_{\mathrm{data}}(x)} \left[(D(x) - b)^2 \right] + \frac{1}{2} \mathbb{E}_{z \sim p_z(z)} \left[(D(G(z)) - a)^2 \right] \\ & \min_{G} V_{\mathrm{LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{x \sim p_{\mathrm{data}}(x)} \left[(D(x) - c)^2 \right] + \frac{1}{2} \mathbb{E}_{z \sim p_z(z)} \left[(D(G(z)) - c)^2 \right] \\ & * \text{ Note that } \mathbb{E}_{x \sim p_{\mathrm{data}}(x)} \left[(D(x) - c)^2 \right] \text{ does not contain } G. \end{split}$$

$$D^*(x) = \frac{bp_{\text{data}}(x) + ap_g(x)}{p_{\text{data}}(x) + p_g(x)}$$

[3. Theoretical Analysis]\$ _

0 F

>>> Relation to Pearson χ^2 Divergence II

Proof of the optimal discriminator In fact, we are trying to minimize V(D):

$$\begin{split} V(D) &= \frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[(D(x) - b)^2 \right] + \frac{1}{2} \mathbb{E}_{z \sim p_z} \left[(D(G(z)) - a)^2 \right] \\ &= \frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[(D(x) - b)^2 \right] + \frac{1}{2} \mathbb{E}_{x \sim p_g} \left[(D(x) - a)^2 \right] \\ &= \int_{\mathcal{X}} \frac{1}{2} \left(p_{\text{data}} \left(x \right) (D(x) - b)^2 + p_g(x) (D(x) - a)^2 \right) \mathrm{d}x \leftarrow \text{Denoted by } Y \end{split}$$

Let its derivative be zero:

$$\frac{\mathrm{d}Y}{\mathrm{d}D(x)} = p_{\mathtt{data}}(x)(D(x) - b) + p_g(x)(D(x) - a) = 0$$

Then we have:

$$D(x) = \frac{bp_{\text{data}}(x) + ap_g(x)}{p_{\text{data}}(x) + p_g(x)} \leftarrow \text{Denoted by } D^*(x)$$

In other word, $D^*(x)$ minimizes V(D).

[3. Theoretical Analysis] \$_____

>>> Relation to Pearson χ^2 Divergence III

Theorem. Optimizing LSGANs yields minimizing Pearson χ^2 divergence between $p_d + p_g$ and p_g , if b - c = 1, and b - a = 2. Proof. Substitute $D^*(x)$ into the equation:

$$\begin{aligned} &2C(G) = \mathbb{E}_{x \sim p_{d}} \left[(D^{*}(x) - c)^{2} \right] + \mathbb{E}_{z \sim p_{z}} \left[(D^{*}(G(z)) - c)^{2} \right] \\ &= \mathbb{E}_{x \sim p_{d}} \left[(D^{*}(x) - c)^{2} \right] + \mathbb{E}_{x \sim p_{g}} \left[(D^{*}(x) - c)^{2} \right] \\ &= \mathbb{E}_{x \sim p_{d}} \left[\left(\frac{bp_{d}(x) + ap_{g}(x)}{p_{d}(x) + p_{g}(x)} - c \right)^{2} \right] + \mathbb{E}_{x \sim p_{g}} \left[(\cdots)^{2} \right] \\ &= \int_{\mathcal{X}} p_{d}(x) \left(\frac{(b - c)p_{d}(x) + (a - c)p_{g}(x)}{p_{d}(x) + p_{g}(x)} \right)^{2} dx + \int_{\mathcal{X}} p_{g}(x) (\cdots)^{2} dx \\ &= \int_{\mathcal{X}} \frac{((b - c)p_{d}(x) + (a - c)p_{g}(x))^{2}}{p_{d}(x) + p_{g}(x)} dx \end{aligned}$$

[3. Theoretical Analysis]\$ _

>>> Relation to Pearson χ^2 Divergence IV

Let b-c=1, b-a=2, we have:

$$2C(G) = \int_{\mathcal{X}} \frac{\left((b-c)\left(p_{d}(x) + p_{g}(x)\right) - (b-a)p_{g}(x)\right)^{2}}{p_{d}(x) + p_{g}(x)} dx$$
$$= \int_{\mathcal{X}} \frac{\left(2p_{g}(x) - \left(p_{d}(x) + p_{g}(x)\right)\right)^{2}}{p_{d}(x) + p_{g}(x)} dx$$
$$= \chi^{2}_{\text{Pearson}} (p_{d} + p_{g} \| 2p_{g})$$

That proves the theorem.

>>> Parameters Selection

Let b-c=1, b-a=2 \Rightarrow Minimizing Pearson χ^2 Divergence For example, a=-1, b=1, c=0:

$$\begin{split} \min_{D} V_{\mathrm{LSGAN}}(D) &= \frac{1}{2} \mathbb{E}_{x \sim p_{\mathrm{data}}(x)} \left[(D(x) - 1)^2 \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) + 1)^2 \right] \\ \min_{G} V_{\mathrm{LSGAN}}(G) &= \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})))^2 \right] \end{split}$$

Let b=c \Rightarrow Generating samples as real as possible For example, a=0, b=-1, c=-1:

$$\begin{split} \min_{D} V_{\mathrm{LSGAN}}(D) &= \frac{1}{2} \mathbb{E}_{x \sim p_{\mathrm{data}}(x)} \left[(D(x) - 1)^2 \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})))^2 \right] \\ \min_{G} V_{\mathrm{LSGAN}}(G) &= \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) - 1)^2 \right] \end{split}$$

[3. Theoretical Analysis]\$ _

>>> Better than regular GAN, but not good enough I

If D is good enough, the problem still exists Without loss of generality, let c = 0, then the optimal discriminator is:

$$D^* = \frac{bP_{\rm d} + aP_g}{P_{\rm d} + P_g}$$

Plug it into the extended loss function:

$$V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{x \sim p_{d}(x)} \left[D^{*}(x)^{2} \right] + \frac{1}{2} \mathbb{E}_{x \sim p_{g}(x)} \left[D^{*}(x)^{2} \right]$$

If ${\bf supp}\ p_{\rm d}$ and ${\bf supp}\ p_g$ are $\underline{\it low}\ {\rm dimensional\ manifolds\ in\ high}\ {\rm dimensional\ space,\ we\ have}$

$$\mathbb{P}[\mu(\mathbf{supp} \ p_{\mathrm{d}} \cap \mathbf{supp} \ p_g) = 0] = 1$$
 (1)

>>> Better than regular GAN, but not good enough II

For a given x, there are only four cases:

- 1. $p_{\rm d}(x) = 0$, $p_g(x) = 0$: We can <u>ignore this case</u>;
- 2. $p_{\rm d}(x) \neq 0$, $p_{g}(x) = 0$: $D^*(x) = a$, $V_{\rm LSGAN}$ is a constant;
- 3. $p_{\rm d}(x)=0$, $\overline{p_g(x)} \neq 0$: $D^*(x)=b$, $\underline{V_{\rm LSGAN}}$ is a constant;
- 4. $p_{\rm d}(x) \neq 0$, $p_g(x) \neq 0$: <u>Will not happen</u> due to Equ (1).

Gradients vanish again!

For LSGANs, if:

- * Equ (1) holds; (Support sets are disjoint)
- * Discriminator D is good enough; (very close to D^*)

then the loss will be zero \rightarrow Gradient vanish.

Another point of view: WGAN (Wasserstein metric) Not Lipschitz continuous \rightarrow Vanishing gradients. To conclude, LSGAN cannot solve the problem completely.

1. What is LSGAN:

1.1 Sigmoid cross entropy \rightarrow Least squares;

- 2. Benifits of LSGAN:
 - 2.1 Better stability;
 - 2.2 Higher quailty;
 - 2.3 Partially solves the problem of vanishing gradients;
- 3. Theoretical Properties:

3.1 Convergence: LSGAN minimizes Pearson χ^2 Divergence;

- 4. Deficiencies of LSGAN:
 - 4.1 Cannot solve the problem of completely.

Thanks For Listening!