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Challenge

1. Modeling distribution of distribution
Each sample is a distribution of points

Overall shape is also a distribution

2. Estimating probability densities
Implicit density of GAN models



Methods

 Continuous Normalizing Flow + VAE



Methods

 Let 𝑓𝑓1, … , 𝑓𝑓𝑛𝑛 denote a series of invertible transformations, 𝑦𝑦 denotes a latent 
variable.

 Probability density

Continuous Normalizing Flow



Methods

 Extend to the continuous model by defining continuous-time dynamic
𝜕𝜕𝑦𝑦 𝑡𝑡
𝜕𝜕𝑡𝑡

= 𝑓𝑓(𝑦𝑦 𝑡𝑡 , 𝑡𝑡)

 Continuous normalizing flow(CNF) is formulated by

 We can apply ordinary differential equation(ODE) solver to estimate the output

Continuous Normalizing Flow



Methods

 The variational auto-encoder (VAE) is a framework that allows one to learn P(X) 
from a dataset of observations of X.

Variational Auto Encoder



Methods PointFlow
 Encoder:𝑄𝑄Φ(𝑧𝑧|𝑋𝑋) encodes a point cloud into a shape representation z

 Decoder/Generator:𝑃𝑃𝜃𝜃(𝑋𝑋|𝑧𝑧) models the distribution of points given the shape 
representation

 Prior:𝐹𝐹𝜓𝜓(𝑧𝑧|𝑤𝑤) model the shape prior by transforming a simple Gaussian distribution 𝑤𝑤



 ELBO 

 Posterior Entropy: 𝐿𝐿𝑒𝑒𝑛𝑛𝑒𝑒
 Models the entropy of the approximated posterior

 Prior: 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 Encourages the encoded shape representation to have a high 

probability under the prior

 Reconstruction likelihood:𝐿𝐿𝑝𝑝𝑒𝑒𝑟𝑟𝑝𝑝𝑛𝑛
 Describe the reconstruction log likelihood of the input point 

set

Methods PointFlow



Experiments

 Point Cloud to Point Cloud

 Chamfer Distance: 

Measures the squared distance between each point in one set to its nearest 
neighbor in the other set.

 Earth Mover’s distance:

Measures the squared distance between two bijection set.

Measurements



Experiments

 Sets/Distribution Pairwise

 Jensen-Shannon Divergence (JSD)

 Coverage (COV)

 Minimum matching distance (MMD)

 1-nearest neighbor accuracy (1-NNA)

1-NN classifier classifies it as coming from real or fake according to the label of 
its nearest sample.

Measurements
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Experiments Result

Generation

Examples of generated point clouds



Experiments Result

Reconstruction

Trained with reconstruction loss only



Experiments Result



Conclusion

 Propose a point cloud generative model based on 
normalizing flow

 Modeling point cloud and shape with different distribution

 Future work could be extended to multimodality
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