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Background

» 3D Data
» 3D Geometry Representations

» Generative Learning
» Auto Encoder|[1]
» GAN[2]
» Autoregressive Model[3]




Challenge

1. Modeling distribution of distribution
Each sample is a distribution of points

Overall shape is also a distribution
2. Estimating probability densities
Implicit density of GAN models

Low probability

High probability.
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Methods

» Continuous Normalizing Flow + VAE




Methods

Continuous Normalizing Flow

» Let fi, ..., f, denote a series of invertible transformations, y denotes a latent
variable.

» Probability density

O [
3yk— 1

log P(z) = log P(y) Z log |det




Methods

Continuous Normalizing Flow

» Extend to the continuous model by defining continuous-time dynamic

DO ey
» Continuous normalizing flow(CNF) is formulated by
y(to) / fy y(to) ~ P(y)

log P(z) = log P(y(ty)) — /to Tr (8(3{)) dt

» We can apply ordinary differential equation(ODE) solver to estimate the output




Methods

Variational Auto Encoder

» The variational auto-encoder (VAE) is a framework that allows one to learn P(X)
from a dataset of observations of X.
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Methods PointFlow

» Encoder:Q4(z|X) encodes a point cloud into a shape representation z

» Decoder/Generator:Pg(X|z) models the distribution of points given the shape
representation

» Prior:F;(z|w) model the shape prior by transforming a simple Gaussian distribution w
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(@) Training (Auto-encoding) (a) Test (Sampling)



Methods PointFlow

> ELBO ¢ u".0" =argmax 3 L(X:0.0.0).

T Xex
» Posterior Entropy: Loy,

» Models the entropy of the approximated posterior

Lent(X; 0) = H[Q¢(Z|X)]

» Prior: Lyyior my

» Encourages the encoded shape representation to have a high
probability under the prior

:Cprior(X; w: d’) = ]EQ¢,(z|9:) [log P’ﬁb(z)]

» Reconstruction likelihood: L, .con

» Describe the reconstruction log likelihood of the input point
set

Lrecon (X; 0, ‘?5) = ]EQ¢(z|9:) [log PQ(X|z)]

(a) Training (Auto-encoding)



Experiments

Measurements

» Point Cloud to Point Cloud

» Chamfer Distance:

Measures the squared distance between each point in one set to its nearest
neighbor in the other set.

» Earth Mover’s distance:

Measures the squared distance between two bijection set.




Experiments

Measurements

» Sets/Distribution Pairwise
» Jensen-Shannon Divergence (JSD)
» Coverage (COV)
» Minimum matching distance (MMD)

» 1-nearest neighbor accuracy (1-NNA)

1-NN classifier classifies it as coming from real or fake according to the label of
its nearest sample.

1-NNA(S,, S,)

 Yxes, INx € Syl + Sy s, [Ny €8]
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Experiments Result

# Parameters (M) " MMD () COV (%, 1) 1-NNA (%, )

Category  Model Full Gen CD EMD CD EMD CD EMD
-GAN 7.22 6.91 7.44 0.261 5.47 42.72 18.02 93.58 9951

I-GAN (CD) 1.97 171 4.62 0.239 427 4321 2123 86.30 97.28

Airolane FGAN (EMD) 1.97 1.71 3.61 0.269 3.29 47.90 50.62 87.65 85.68
P PC-GAN 9.14 1.52 4.63 0.287 3.57 36.46 40.94 94.35 92.32
PointFlow (ours)  1.61 1.06 4.92 0.217 3.24 46.91 48 .40 75.68 75.06

Training set - - 6.61 0.226 3.08 42.72 49.14 70.62 67.53

-GAN 7.22 6.91 11.5 2.57 12.8 33.99 9.97 71.75 99.47

I-GAN (CD) 1.97 171 4.59 2.46 8.91 41.39 25.68 64.43 85.27

Cha I-GAN (EMD) 1.97 171 2.27 261 7.85 40.79 41.69 64.73 65.56
alr PC-GAN 9.14 1.52 3.90 275 8.20 36.50 38.98 76.03 7837
PointFlow (ours)  1.61 1.06 1.74 2.42 7.87 46.83 46.98 60.88 59.89

Training set ; - 1.50 1.92 7.38 57.25 55.44 59.67 58.46

~GAN 7.22 6.91 12.8 1.27 8.74 15.06 9.38 97.87 99.86

I-GAN (CD) 1.97 1.71 4.43 1.55 6.25 38.64 18.47 63.07 88.07

Car I-GAN (EMD) 1.97 1.71 221 1.48 5.43 39.20 39.77 69.74 68.32
PC-GAN 9.14 1.52 5.85 1.12 5.83 23.56 30.29 92.19 90.87

PointFlow (ours)  1.61 1.06 0.87 0.91 5.22 44.03 46.59 60.65 62.36

Training set - - 0.86 1.03 5.33 48.30 51.42 57.39 53.27




Experiments Result
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Examples of generated point clouds

Generation




Experiments Result

Reconstruction

Model # Parameters M) CD  EMD x X g K

I-GAN (CD) [!] 1.77
I-GAN (EMD) [1] 1.77
AtlasNet [17] 44.9
PointFlow (ours) 1.30

7.12
8.85
5.13
1.54

7.95
5.26
5.97
5.18

Trained with reconstruction loss only
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Experiments Result
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Conclusion

» Propose a point cloud generative model based on
normalizing flow

» Modeling point cloud and shape with different distribution

» Future work could be extended to multimodality
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