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Preliminaries &
Related Work

A Brief Introduction of

Molecule Graph Generation
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Molecule Graphs (MolGraph)

Representation of Molecules
* Sequential representation: SMILES
* Graph representation: structural formula

(recap high school chemistry)
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Graph ConvNets (GCNs) ANEIE SR

GCN Convolves over node neighborhoods.

e As Matrix Multiplication:
H({t+1) — G(AH(t)W(t))

* As Neighborhood Aggregation:

(t+1) _ (t)
Hu — 0 ( ZvEN(u) Hv W(t))

(two flips of one coin)



MolGraph Generation AEMSS

Related work in MolGraph Generation (GCN based).

MolGraph + VAE = GraphVAE (2018)
MolGraph + VAE + structural priors = JT-VAE (2018)
MolGraph + GAN = MolGAN (2018)
MolGraph + Flow = GraphNVP (2019); GraphAF (2020)
MolGraph + RL + GAN = GCPN (2018)

(arXiv year)



Markovian Graph
Generation (MDP)

Motivations & Basic Schemes

Behind GCPN
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MolGraph Gen. as MDP

Markovian Decision Process

e Markovian Condition:

P(S¢r1lSe Se—1,") = P(Se+1]5¢)

* In GCPN, this condition means in the generation process,

each step is determined fully by the intermediately

generated molecule.
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GCPN Overview
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Overall techniques: RL + Adversarial Loss

e Sequentially constructing a MolGraph Using MDP
 The agent gain rewards according to chem. rules and GAN validity
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GCPN Overview
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(d) Dynamics
(a) State — G;  Scaffold — C b) GCPN — my(a;|G, U C) (c)Action —a;~mg  p(Ge1|Grar) (e) State — G141 (f) Reward — 1

In each step, an RL agent

e either connect a new atom to an existing one
* or connect two existing atoms.
e (as well as) choose whether to stop.



Model Detalils:
RL setup in GCPN

Details (brie; actually)

in the RL Implementation of GCPN




Generation Scheme

Using GCN to encode Rendering the graph Output generated
intermediately i after each action is : molecule.
generated molecule, sampled — and reject ;

i as the observed state ! infeasible actions.

for the agent.

: 4-step action is

i sampled, based on the
GCN embeddings:

: (1) candidate atom;
(2) target atom;

Step rewards and Final rewards

(1) Step reward: (small) reward
of mol. including validity reward
i and GAN reward

: (3) bond type; . (2) Final rewards: molecular
(4) stop or not. properties metrics including —
logP; QED; MW, ZINC filters...
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(Heterogenous) GCN state encoder.

_1
2

o HUHD = acG(ReLU({D; 2 E;D; 2 HOW"} Vi € (1,....1)))

* Note: the AGG(:) is conducted for different bond types.

(distinguish with graph pooling / neighborhood aggregation)
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Action

Four-step action generated from states.

Generated & sampled sequentially.

at4+1 — CONCAT((fﬂrst » Usecond s Uedge astop}

farst(5¢) = SOFTMAX (m (X)), afirst ~ farst(s¢) € {0, 1}"
fSCC‘-Dﬂd(Sf) — SOFTMAX(”ES(X&first' X)} (lsecond ™~ fsecond(gt} S {0 l}n_‘_c
fedge(st) — SOFTMJAX{”E'E(X'-lfirst' Xasccond))' (I-edge ~ .fCCIgC(Sf} < {O J-}b
fStOP{St) - SOFTMAX(”%(AGG(X)})' Ustop ™ fstop(ﬁt) = {U l}



o z ﬂ
ANETES

PEKING UNIVERSITY

Dynamics

Produce (“render”) the graph according to the

sampled action. Reject infeasible actions.

(Deterministic state trans. dynamics.)
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Reward

Step (small) & Final (large) Reward

e Step reward 1: validity. Penalize infeasible actions.
e Stepreward 2: -1 * GAN Loss. Penalize “weird” samples.

* Final reward: molecular properties —

* logP: octanol-water partition coefficient (Ji§7K 3Bt & 20
e QED: druglikeness (Zk2§:)

e MW: molecular weights (4T &)

* Penalty over unrealistic molecules (Z5kn)

« Zinc fn. group filters: (ZEEk#E, KB T8 HZY4 F & ZINC)
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Training

Policy Gradient + Pretraining.

 Proximal Policy Optimization (PPO)

We will not unpack it here.
See ref. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

* Pretraining using generation trajectory of true molecules.

(could be very important !)



Experiments &
Observations

Some Brief Results of GCPN
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Experiments

* Property optimization

Gen. mols with some property optimized.
* Property Targeting

Gen. mols with some property closed to a given target.
* Constraint Property Optimization

Conduct property optimization with the molecule

contains a given substructure.



Comp. v.s. SOTA
(JT-VAE / ORGAN)

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.
Penalized logP QED
Ist  2nd  3rd  Validity Ist 2nd 3rd  Validity
ZINC 452  4.30 4.23 100.0% 0948 0.948 0948 100.0%

ORGAN 3.63 3.49 3.44 0.4% 0.896 0.824 0.820 2.2%
JT-VAE 530 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 7.98 7.85 7.80 100.0% 0948 0947 0946 100.0%
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Method

Table 2: Comparison of the effectiveness of property targeting task.

Methoq 25 SloeP<—2  5<logP <55 150 < MW < 200 500 < MW < 550
Success Diversity Success Diversity  Success Diversity  Success  Diversity
ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 —
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 — 0.2% 0.909 15.1% 0.759 0.1% 0.907

GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920

Table 3: Comparison of the performance in the constrained optimization task.
JT-VAE GCPN

0

Improvement Similarity Success  Improvement Similarity Success

0.0 1.91+204 028+0.15 97.5% 420+£1.28 0.32+0.12 100.0%
02 1.68+1.85 033+£0.13 97.1% 412+119 034+0.11 100.0%
04 084+145 051+0.10 83.6% 249+1.30 047+0.08 100.0%
0.6 0.21=£0.71 0.69+£0.06 464% 0.79+0.63 0.68+0.08 100.0%
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Some demo.
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Summary of Observation @ 2¢5%%

* Indeed, GCPN produced very “valid” results.

* This is probably the results of its elaborated process of
generation, including the trajectory pretraining & GAN loss,
while the diversity is somehow harmed.

* No chem. or bio. motivation is adequately combined in the
generation process. Therefore, some actions of the agent

seems bizarre.



Thanks
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