



#### **Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation**

Li, Ziyao & Ma, Xiaojun; May 14, 2020

## Contents



| 01 | Preliminaries &<br>Related Work    |                                         |
|----|------------------------------------|-----------------------------------------|
|    |                                    | <b>02</b><br>Markovian Graph Generation |
| 03 | Model Details:<br>RL setup in GCPN |                                         |
|    |                                    | 04<br>Experiments & Observations        |

## Preliminaries & Related Work

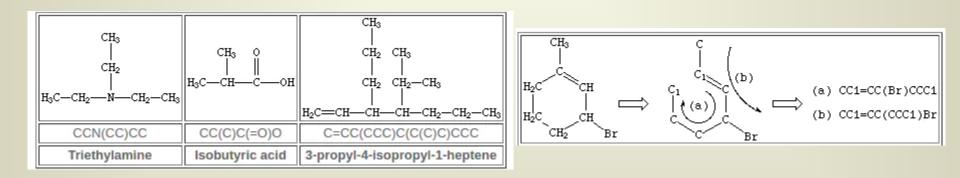
A Brief Introduction of Molecule Graph Generation



#### **Representation of Molecules**

- Sequential representation: SMILES
- Graph representation: structural formula

(recap high school chemistry)



## Graph ConvNets (GCNs)



#### **GCN** Convolves over node neighborhoods.

• As Matrix Multiplication:

 $H^{(t+1)} = \sigma \left( A H^{(t)} W^{(t)} \right)$ 

• As Neighborhood Aggregation:

$$H_u^{(t+1)} = \sigma\left(\sum_{v \in N(u)} H_v^{(t)} W^{(t)}\right)$$

#### (two flips of one coin)

## **MolGraph Generation**



#### Related work in MolGraph Generation (GCN based).

MolGraph + VAE = GraphVAE (2018) MolGraph + VAE + structural priors = JT-VAE (2018) MolGraph + GAN = MolGAN (2018) MolGraph + Flow = GraphNVP (2019); GraphAF (2020) MolGraph + RL + GAN = GCPN (2018)

(arXiv year)

## Markovian Graph Generation (MDP)

#### Motivations & Basic Schemes Behind GCPN

## MolGraph Gen. as MDP



**Markovian Decision Process** 

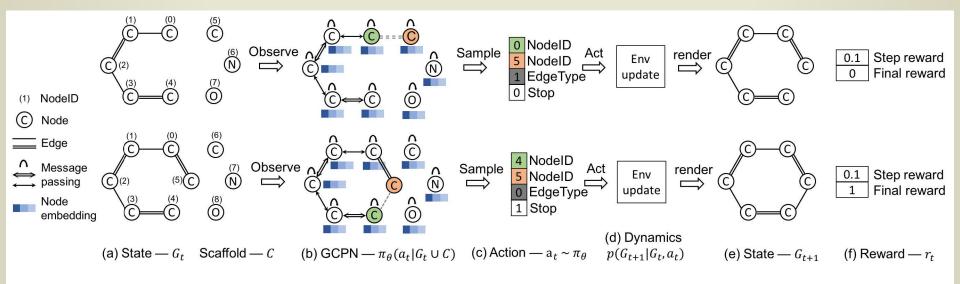
Markovian Condition:

$$p(s_{t+1}|s_t, s_{t-1}, \cdots) = p(s_{t+1}|s_t)$$

 In GCPN, this condition means in the generation process, each step is determined fully by the <u>intermediately</u> <u>generated molecule</u>.

## **GCPN** Overview



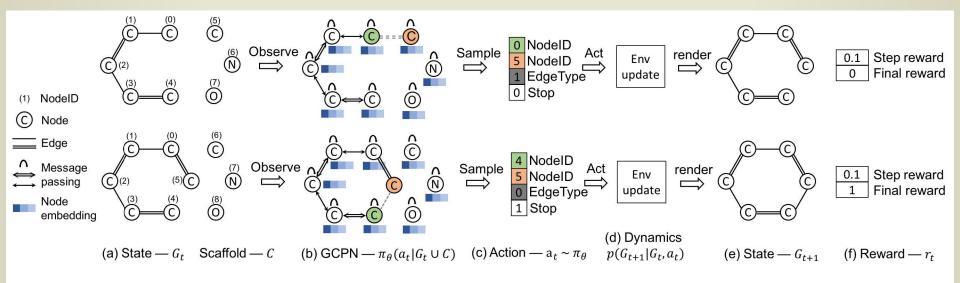


#### **Overall techniques: RL + Adversarial Loss**

- Sequentially constructing a MolGraph Using MDP
- The agent gain rewards according to chem. rules and GAN validity

## **GCPN** Overview





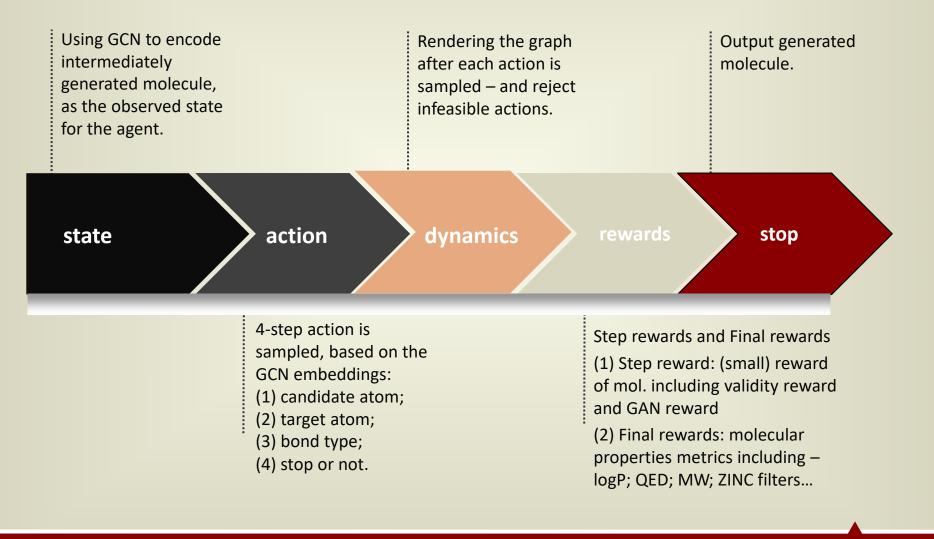
#### In each step, an RL agent

- either connect a new atom to an existing one
- or connect two existing atoms.
- (as well as) choose whether to stop.

## Model Details: RL setup in GCPN

Details *(brief, actually)* in the RL Implementation of GCPN

## **Generation Scheme**



## State



#### (Heterogenous) GCN state encoder.

• 
$$H^{(l+1)} = \operatorname{AGG}(\operatorname{ReLU}(\{\tilde{D}_i^{-\frac{1}{2}}\tilde{E}_i\tilde{D}_i^{-\frac{1}{2}}H^{(l)}W_i^{(l)}\}, \forall i \in (1, ..., b)))$$

Note: the AGG(·) is conducted for different bond types.
(distinguish with graph pooling / neighborhood aggregation)

## Action



### Four-step action generated from states. Generated & sampled sequentially.

$$\begin{aligned} a_{t+1} &= \operatorname{CONCAT}(a_{\operatorname{first}}, a_{\operatorname{second}}, a_{\operatorname{edge}}, a_{\operatorname{stop}}) \\ f_{\operatorname{first}}(s_t) &= \operatorname{SOFTMAX}(m_f(X)), \\ f_{\operatorname{second}}(s_t) &= \operatorname{SOFTMAX}(m_s(X_{a_{\operatorname{first}}}, X)), \\ f_{\operatorname{edge}}(s_t) &= \operatorname{SOFTMAX}(m_e(X_{a_{\operatorname{first}}}, X_{a_{\operatorname{second}}})), \\ f_{\operatorname{stop}}(s_t) &= \operatorname{SOFTMAX}(m_t(\operatorname{AGG}(X))), \end{aligned}$$

 $a_{\text{first}} \sim f_{\text{first}}(s_t) \in \{0, 1\}^n$  $a_{\text{second}} \sim f_{\text{second}}(s_t) \in \{0, 1\}^{n+c}$  $a_{\text{edge}} \sim f_{\text{edge}}(s_t) \in \{0, 1\}^b$  $a_{\text{stop}} \sim f_{\text{stop}}(s_t) \in \{0, 1\}$ 





## Produce ("render") the graph according to the sampled action. Reject infeasible actions. (Deterministic state trans. dynamics.)

## Reward



#### Step (small) & Final (large) Reward

- Step reward 1: validity. Penalize infeasible actions.
- Step reward 2: -1 \* GAN Loss. Penalize "weird" samples.
- Final reward: molecular properties
  - logP: octanol-water partition coefficient (脂水分配系数)
  - QED: druglikeness (类药性)
  - MW: molecular weights (分子量)
  - Penalty over unrealistic molecules (经验标准)
  - Zinc fn. group filters: (生医标准,来自于商用药物分子库 ZINC)

## Training



#### **Policy Gradient + Pretraining.**

#### • **Proximal Policy Optimization (PPO)**

We will not unpack it here.See ref. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

#### Pretraining using generation trajectory of true molecules.

(could be very important !)

# Experiments & Observations

Some Brief Results of GCPN

## Experiments



Property optimization

Gen. mols with some property optimized.

Property Targeting

Gen. mols with some property closed to a given target.

Constraint Property Optimization

Conduct property optimization with the molecule

contains a given substructure.

## Comp. v.s. SOTA (JT-VAE / ORGAN)



Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

| Method | Penalized logP |      |      |          | QED   |       |       |          |
|--------|----------------|------|------|----------|-------|-------|-------|----------|
|        | 1st            | 2nd  | 3rd  | Validity | 1st   | 2nd   | 3rd   | Validity |
| ZINC   | 4.52           | 4.30 | 4.23 | 100.0%   | 0.948 | 0.948 | 0.948 | 100.0%   |
| ORGAN  | 3.63           | 3.49 | 3.44 | 0.4%     | 0.896 | 0.824 | 0.820 | 2.2%     |
| JT-VAE | 5.30           | 4.93 | 4.49 | 100.0%   | 0.925 | 0.911 | 0.910 | 100.0%   |
| GCPN   | 7.98           | 7.85 | 7.80 | 100.0%   | 0.948 | 0.947 | 0.946 | 100.0%   |

Table 2: Comparison of the effectiveness of property targeting task.

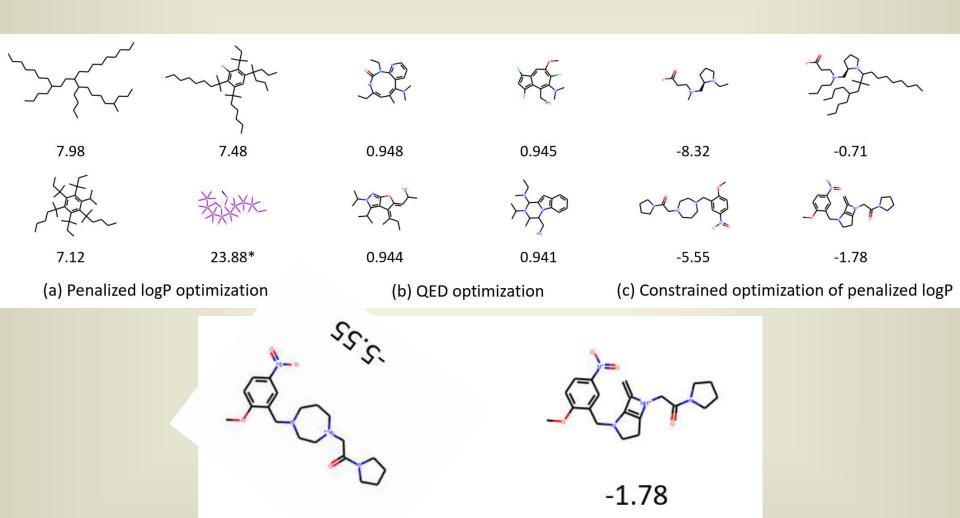
| Method - | $-2.5 \le \log P \le -2$ |           | $5 \le \log P \le 5.5$ |           | $150 \leq \mathrm{MW} \leq 200$ |           | $500 \le \mathrm{MW} \le 550$ |           |
|----------|--------------------------|-----------|------------------------|-----------|---------------------------------|-----------|-------------------------------|-----------|
|          | Success                  | Diversity | Success                | Diversity | Success                         | Diversity | Success                       | Diversity |
| ZINC     | 0.3%                     | 0.919     | 1.3%                   | 0.909     | 1.7%                            | 0.938     | 0                             | _         |
| JT-VAE   | 11.3%                    | 0.846     | 7.6%                   | 0.907     | 0.7%                            | 0.824     | 16.0%                         | 0.898     |
| ORGAN    | 0                        | _         | 0.2%                   | 0.909     | 15.1%                           | 0.759     | 0.1%                          | 0.907     |
| GCPN     | 85.5%                    | 0.392     | 54.7%                  | 0.855     | 76.1%                           | 0.921     | <b>74.1</b> %                 | 0.920     |

Table 3: Comparison of the performance in the constrained optimization task.

| δ   |                 | JT-VAE          |         | GCPN                         |                 |                    |  |
|-----|-----------------|-----------------|---------|------------------------------|-----------------|--------------------|--|
|     | Improvement     | Similarity      | Success | Improvement                  | Similarity      | Success            |  |
| 0.0 | $1.91 \pm 2.04$ | $0.28\pm0.15$   | 97.5%   | $4.20 \pm 1.28$              | $0.32\pm0.12$   | 100.0%             |  |
| 0.2 | $1.68 \pm 1.85$ | $0.33 \pm 0.13$ | 97.1%   | $4.12 \pm 1.19$              | $0.34 \pm 0.11$ | <b>100.0</b> %     |  |
| 0.4 | $0.84 \pm 1.45$ | $0.51\pm0.10$   | 83.6%   | $2.49 \pm 1.30$              | $0.47 \pm 0.08$ | <b>100.0</b> %     |  |
| 0.6 | $0.21\pm0.71$   | $0.69 \pm 0.06$ | 46.4%   | $\boldsymbol{0.79 \pm 0.63}$ | $0.68 \pm 0.08$ | $\mathbf{100.0\%}$ |  |

## Some demo.





## **Summary of Observation**



- Indeed, GCPN produced very "valid" results.
- This is probably the results of its elaborated process of generation, including the trajectory pretraining & GAN loss, while the diversity is somehow harmed.
- No chem. or bio. motivation is adequately combined in the generation process. Therefore, some actions of the agent seems bizarre.

## Thanks

## <u>References</u>



(All available in arXiv so only arXiv ID provided.)

- 1707.06347 PPO
- 1802.03480 GraphVAE
- 1802.04364 JT-VAE
- 1805.11973 MolGAN
- 1806.02473 GCPN
- 1905.11600 GraphNVP
- 2001.09382 GraphAF