

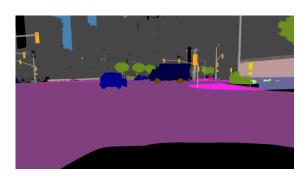
Multi-source Domain Adaptation for Semantic Segmentation

Hexin Dong Center For Data Science

[1]. Sicheng Zhao et al, Multi-source Domain Adaptation for Semantic Segmentation , NIPS 2019

Semantic Segmentation:

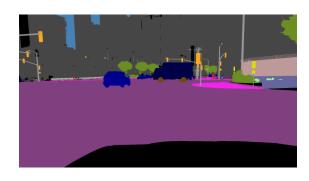
Segmentation model model



image

label

Unsupervised Domain Adaptation:



Segmentation model

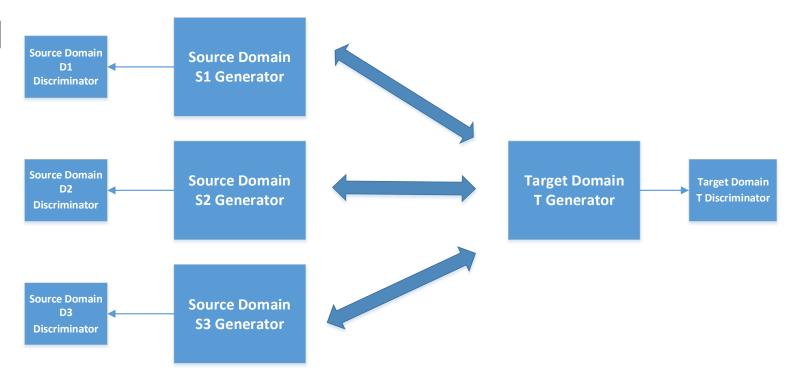
Target Domain(no label)

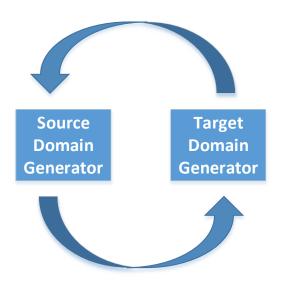
Common Approach:

- 1. find a mapping from representations of the source domain to those of the target (Pixel level method: CycleGan etc)
- 2. find **domain-invariant** representations that are shared between the two domains(Feature level method/distengle method)
- 3. Semi-Supervised Learning method (Self training)

Method outline:

- 1. Image Generating Loss
 - 1).pixel level GAN loss 2).Reconstruction loss
 - 3).Sub-domain aggregation loss 4).cross-domain cycle loss
- 2. Semantic Based Loss
 - 1).task loss 2).Semantic consistency loss
- 3. Feature Level Loss
 - -Feature level GAN loss





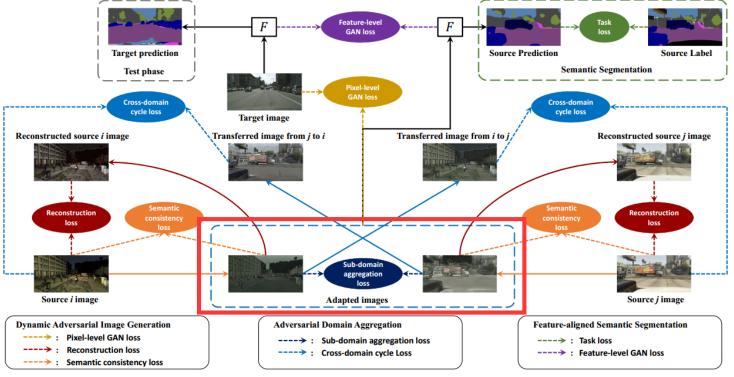
Pixel level GAN loss:

$$\mathcal{L}_{GAN}^{S_i \to T}(G_{S_i \to T}, D_T, X_i, X_T) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \log D_T(G_{S_i \to T}(\mathbf{x}_i)) + \mathbb{E}_{\mathbf{x}_T \sim X_T} \log[1 - D_T(\mathbf{x}_T)].$$

$$\mathcal{L}_{GAN}^{T \to S_i}(G_{T \to S_i}, D_i, X_T, X_i) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \log[1 - D_i(\mathbf{x}_i)] + \mathbb{E}_{\mathbf{x}_t \sim X_T} \log D_i(G_{T \to S_i}(\mathbf{x}_t)).$$

Reconstuction loss:

$$\mathcal{L}_{cyc}^{S_i \leftrightarrow T}(G_{S_i \to T}, G_{T \to S_i}, X_i, X_T) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \parallel G_{T \to S_i}(G_{S_i \to T}(\mathbf{x}_i)) - \mathbf{x}_i \parallel_1 + \mathbb{E}_{\mathbf{x}_T \sim X_T} \parallel G_{S_i \to T}(G_{T \to S_i}(\mathbf{x}_t)) - \mathbf{x}_t \parallel_1.$$



Sub-domain aggregation loss:

Cross domain cycle loss:

$$\mathcal{L}_{SAD}^{S_i}(G_{S_1 \to T}, \dots G_{S_i \to T}, \dots, G_{S_M \to T}, D_A^i) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \log D_A^i(G_{S_i \to T}(\mathbf{x}_i)) + \frac{1}{M-1} \sum_{j \neq i} \mathbb{E}_{\mathbf{x}_j \sim X_j} \log[1 - D_A^i(G_{S_j \to T}(\mathbf{x}_j))].$$

$$\mathcal{L}_{CCD}^{S_i}(G_{T \to S_1}, \dots G_{T \to S_{i-1}}, G_{T \to S_{i+1}}, \dots, G_{T \to S_M}, G_{S_i \to T}, D_i) = \mathbb{E}_{\mathbf{x}_i \sim X_i} \log D_i(\mathbf{x}_i) + \frac{1}{M-1} \sum_{j \neq i} \mathbb{E}_{\mathbf{x}_j \sim X_j} \log[1 - D_i(G_{T \to S_i}((G_{S_j \to T}(\mathbf{x}_j)))].$$

Task loss:

$$\mathcal{L}_{task}(F, X', Y) = -\mathbb{E}_{(\mathbf{x}', \mathbf{y}) \sim (X', Y)} \sum_{l=1}^{L} \sum_{h=1}^{H} \sum_{w=1}^{W} \mathbb{1}_{[l=\mathbf{y}_{h,w}]} \log(\sigma(F_{l,h,w}(\mathbf{x}'))),$$

Semantic **consistency** loss:

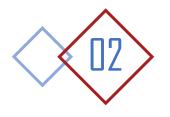
$$\mathcal{L}_{sem}^{S_i}(G_{S_i \to T}, X_i, F_i, F_A) = \mathbb{E}_{\mathbf{x}_i \sim X_i} KL(F_A(G_{S_i \to T}(\mathbf{x}_i)) || F_i(\mathbf{x}_i)),$$

Similar semantic consistency loss in other paper[3]:

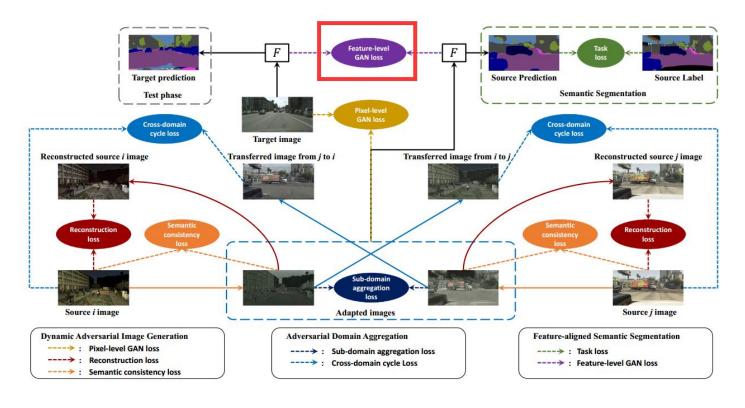
$$\mathcal{L}_{\text{consis}}(X_T; G_{S \to T}, G_{T \to S}, F_S, F_T)$$

$$= -\mathbb{E}_{I_T \sim X_T} \sum_{h, w, c} f_{T \to S}(h, w, c) \log \left(f_T(h, w, c) \right)$$

$$-\mathbb{E}_{I_T \sim X_T} \sum_{h, w, c} f_T(h, w, c) \log \left(f_{T \to S}(h, w, c) \right),$$



method



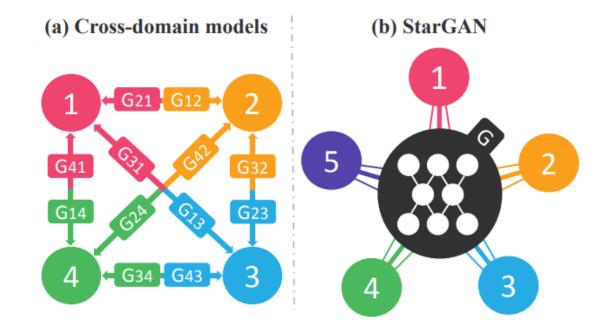
Feature level gan loss:

$$\mathcal{L}_{feat}(F_f, D_{F_f}, X', X_T) = \mathbb{E}_{\mathbf{x}' \sim X'} \log D_{F_f}(F_f(\mathbf{x}')) + \mathbb{E}_{\mathbf{x}_T \sim X_T} \log[1 - D_{F_f}(F_f(\mathbf{x}_T))],$$

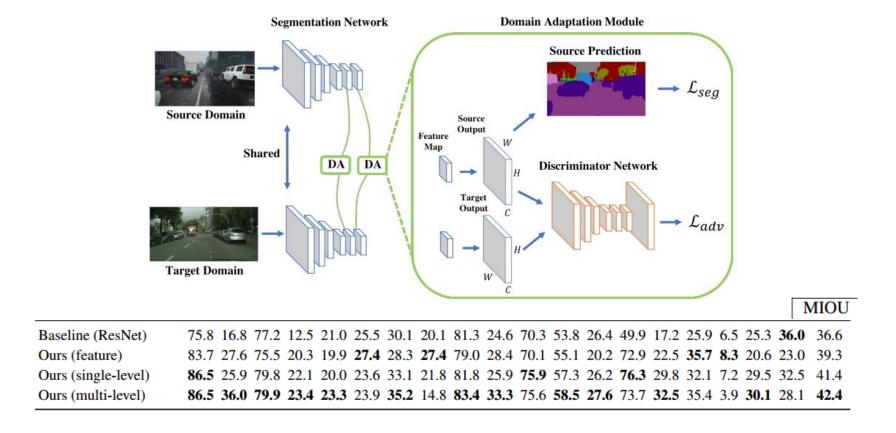
F	(/ ·														
Standards	Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegettion	sky	person	rider	car	snq	m-bike	bicycle	MoU
Source-only	GTA	54.1	19.6	47.4	3.3	5.2	3.3	0.5	3.0	69.2	43.0	31.3	0.1	59.3	8.3	0.2	0.0	21.7
	SYNTHIA	3.9	14.5	45.0	0.7	0.0	14.6	0.7	2.6	68.2	68.4	31.5	4.6	31.5	7.4	0.3	1.4	18.5
	GTA+SYNTHIA	44.0	19.0	60.1	11.1	13.7	10.1	5.0	4.7	74.7	65.3	40.8	2.3	43.0	15.9	1.3	1.4	25.8
GTA-only DA	FCN Wld 47	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	64.6	44.1	4.2	70.4	7.3	3.5	0.0	27.1
	CDA 48	74.8	22.0	71.7	6.0	11.9	8.4	16.3	11.1	75.7	66.5	38.0	9.3	55.2	18.9	16.8	14.6	28.9
	ROAD 50	85.4	31.2	78.6	27.9	22.2	21.9	23.7	11.4	80.7	68.9	48.5	14.1	78.0	23.8	8.3	0.0	39.0
	AdaptSeg 71	87.3	29.8	78.6	21.1	18.2	22.5	21.5	11.0	79.7	71.3	46.8	6.5	80.1	26.9	10.6	0.3	38.3
	CyCADA 32	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	60.7	50.5	9.0	76.9	28.2	4.5	0.0	38.7
	DCAN 55	82.3	26.7	77.4	23.7	20.5	20.4	30.3	15.9	80.9	69.5	52.6	11.1	79.6	21.2	17.0	6.7	39.8
SYNTHIA-only DA	FCN Wld 47	11.5	19.6	30.8	4.4	0.0	20.3	0.1	11.7	42.3	68.7	51.2	3.8	54.0	3.2	0.2	0.6	20.2
	CDA 48	65.2	26.1	74.9	0.1	0.5	10.7	3.7	3.0	76.1	70.6	47.1	8.2	43.2	20.7	0.7	13.1	29.0
	ROAD 50	77.7	30.0	77.5	9.6	0.3	25.8	10.3	15.6	77.6	79.8	44.5	16.6	67.8	14.5	7.0	23.8	36.2
	CyCADA 32	66.2	29.6	65.3	0.5	0.2	15.1	4.5	6.9	67.1	68.2	42.8	14.1	51.2	12.6	2.4	20.7	29.2
	DCAN 55	79.9	30.4	70.8	1.6	0.6	22.3	6.7	23.0	76.9	73.9	41.9	16.7	61.7	11.5	10.3	38.6	35.4
Source-combined DA	CyCADA 32	82.8	35.8	78.2	17.5	15.1	10.8	6.1	19.4	78.6	77.2	44.5	15.3	74.9	17.0	10.3	12.9	37.3
Multi-source DA	MDAN 69	64.2	19.7	63.8	13.1	19.4	5.5	5.2	6.8	71.6	61.1	42.0	12.0	62.7	2.9	12.3	8.1	29.4
	MADAN (Ours)	86.2	37.7	79.1	20.1	17.8	15.5	14.5	21.4	78.5	73.4	49.7	16.8	77.8	28.3	17.7	27.5	41.4
Oracle-Train on Tgt	FCN 5	96.4	74.5	87.1	35.3	37.8	36.4	46.9	60.1	89.0	89.8	65.6	35.9	76.9	64.1	40.5	65.1	62.6

Improvement

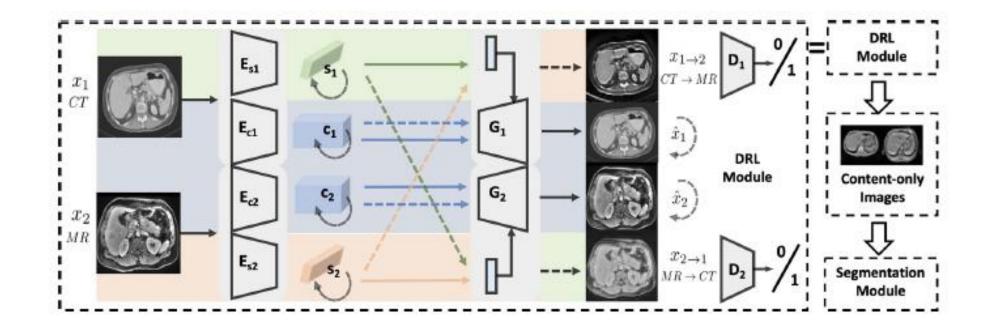
Model的可扩展性,文章中的Generator和Discriminator的数量是O(n)的量级,不利于扩展。简化为一个模型:

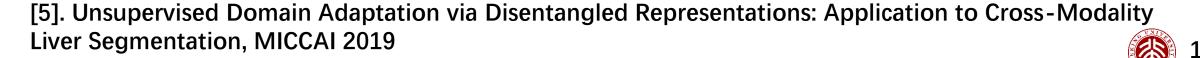


Feature Adversarial Training vs Output space Adversarial Training:

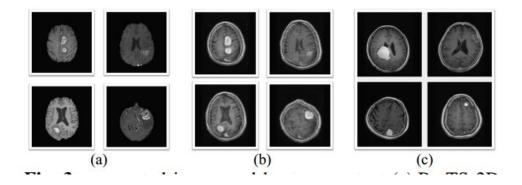


Pixel level adaptation vs distengled based adaptation:





Adaptation+semi-supervised learning:



amount of labeled data	prec	recall	dice	MIOU	AUC
200	0.5553	0.5299	0.5061	0.4063	0.7618
400	0.6231	0.5664	0.5430	0.4359	0.7806
800	0.6330	0.6434	0.5990	0.4947	0.8149
1600	0.6350	0.6435	0.6034	0.4971	0.8188
all(7400)	0.6535	0.6325	0.606	0.4976	0.8137

Multi source pixel level domain adaptation:

- CycleGAN based pixel adaptation method
- Task loss and Semantic Consistcy loss
- Feature level Adversarial learning

Improvement:

- Scalability —— starGAN
- Feature Adversarial Training vs Output space Adversarial Training
- Pixel level adaptation vs distengled based adaptation
- Semi-supervised method

Q&A

